ТРАССОИСКАТЕЛЬ ПОДЗЕМНЫХ КОММУНИКАЦИЙ Российский патент 2003 года по МПК G01V3/12 

Описание патента на изобретение RU2206106C1

Предлагаемое устройство относится к области контрольно-измерительной техники, а именно, к устройствам, предназначенным для бесконтактного определения местоположения, глубины залегания и мест повреждения подземных и скрытых трубопроводящих коммуникаций, таких как кабели или трубопроводы.

Известны устройства для определения места течи в подземных трубопроводах (авт. свид. СССР 336.463, 380.910, 411.268, 417.75, 724.965, 930.034, 932.098, 941.776, 947.666, 1.079.946, 1.208.402, 1.368.685, 1.462.217, 1.657.988, 1.781.577, 1.800.219, 1.806.390; патенты РФ 2.011.110, 2.036.372, 2.047.815, 2.053.436, 2.084.757; патенты США 3.045.116, 3.744.298, 4.289.019; патент Великобритании 1.349.120; патенты Франции 2.374.628, 2.504.651; патент ФРГ 3.112.829; патенты Японии 46-11.795, 55-6.856; 63-22.531; Волошин В.И. и др. Акустический определитель местоположения развивающегося дефекта. Дефектоскопия, 1980, 8, с.69-74 и другие).

Из известных устройств наиболее близким к предлагаемому является "Трассоискатель подземных коммуникаций" (патент РФ 1.806.390, G 01 V 3/00, 1991), который и выбран в качестве прототипа.

Указанное устройство включает в себя комплект, состоящий из генератора тональных импульсов и приемника, антенна которого настраивается на частоту генератора. В приемнике селекция принимаемого сигнала происходит в трех каскадах: сначала в активном узкополосном перестраиваемом фильтре сосредоточенной селекции, далее в режекторном фильтре и далее, после широкополосного усилителя низкой частоты, в активном фильтре низкой частоты. При этом приемная антенна и корпус приемника смонтированы на общей штанге, внутри которой размещены провода, соединяющие элементы схемы. Кроме того, в комплект приемника входит акустический датчик, который подключается к входу приемного блока.

Вместе с тем надежные измерения и идентификация электромагнитных и акустических колебаний, обусловленных переизлучением подземных коммуникаций и перемещением по магистралям среды (газа, воды, нефти и т.д.), затруднены из-за высокого уровня помех естественного (грозовая активность, возмущения в ионосфере и т. д.) и искусственного происхождения (промышленные установки, радиотехнические средства коммуникаций и т.п.).

Технической задачей изобретения является повышение помехоустойчивости и надежности измерений в условиях сильных помех естественного и искусственного происхождения.

Поставленная задача решается тем, что трассоискатель подземных коммуникаций, содержащий передающий блок, выполненный по схеме ключевого режима в виде задающего генератора, манипулятора, буферного каскада, усилителя мощности, узла согласования с линией измерительной схемы и блока питания, и приемный блок, включающий последовательно соединенные приемную антенну и узкополосной перестраиваемый фильтр сосредоточенной селекции, второй вход которого через входной усилитель соединен с выходом акустического датчика, последовательно соединенные режекторный фильтр, усилитель низкой частоты и активный фильтр низкой частоты, к выходу которого подключены акустический индикатор и стрелочный индикатор, снабжен амплитудным детектором, линией задержки, блоком вычитания, блоком интегрирования, блоком деления, блоком сравнения, блоком формирования эталонного напряжения и ключом, причем к выходу узкополосного перестраиваемого фильтра сосредоточенной селекции последовательно подключены амплитудный детектор, линия задержки, блок вычитания, второй вход которого соединен с выходом амплитудного детектора, блок интегрирования, блок деления, второй вход которого соединен с выходом блока вычитания, блок сравнения, второй вход которого соединен с выходом блока формирования эталонного напряжения, и ключ, второй вход которого соединен с выходом узкополосного перестраиваемого фильтра сосредоточенной селекции, а выход подключен к входу режекторного фильтра.

Структурная схема генератора тональных импульсов представлена на фиг.1, структурная схема приемника изображена на фиг.2, общий вид трассоискателя подземных коммуникаций представлен на фиг.3.

Генератор тональных импульсов содержит задающий каскад 1, манипулятор 2, буферный каскад 3, оконечный усилитель мощности 4, узел согласования с линией 5, измерительную схему 6 и блок питания 7.

Приемник трассоискателя содержит последовательно включенные магнитную приемную антенну 8, активный узкополосный перестраиваемый фильтр 11 сосредоточенной селекции, второй вход которого через выходной усилитель 10 соединен с выходом акустического датчика 9, амплитудный детектор 28, линию задержки 29, блок 30 вычитания, второй вход которого соединен с выходом амплитудного детектора 28, блок 31 интегрирования, блок 32 деления, второй вход которого соединен с выходом блока 30 вычитания, блок 34 сравнения, второй вход которого соединен с выходом блока 33 формирования эталонного напряжения, ключ 35, второй вход которого соединен с выходом узкополосного перестраиваемого фильтра 11, режекторный фильтр 12, широкополосной усилитель 13 низкой частоты и активный фильтр 14 низкой частоты, к выходу которого подключены акустический индикатор 15 (наушники) и стрелочный индикатор 16. Встроенный узел питания 17 подключен к узкополосному перестраиваемому фильтру 11, широкополосному усилителю 13 низкой частоты, активному фильтру 14 низкой частоты и индикатору 18 разряда батарей питания.

Генератор тональных импульсов вместе с автономным блоком питания постоянного тока на 12 - 15В и пультом управления монтируется в одном общем корпусе (на чертеже не показан).

Приемник трассоискателя представляет собой конструкцию, собранную по модульному принципу, которая включает в себя: штангу 19, внутри которой проходит электропроводка от магнитной антенны 20 и акустического датчика 21, расположенных на одном конце штанги, к корпусу 22, расположенному на другом конце штанги 19. В корпусе 22 размещен блок приемника и пульт управления 23 со стрелочным индикатором 27. На пульте управления 23 предусмотрено гнездо 25 для штекера подключения наушников 26. К корпусу 22 пристыкована рукоятка 27, внутри которой расположен блок питания, состоящий из четырех гальванических элементов 32.

Такая конструкция трассоискателя технологична при производстве и обладает высокой ремонтопригодностью в эксплуатации, так как легко разбирается на отдельные узлы и детали и предусматривает их взаимозаменяемость. Кроме того, сокращение до минимума протяженности электропроводки, соединяющей блок приемника с магнитной антенной и акустическим датчиком, и размещение ее внутри штанги способствует повышению помехозащищенности приемника в целом.

Трассоискатель подземных коммуникаций работает следующим образом.

Основным режимом работы трассоискателя подземных коммуникаций является режим "Поиск". Этот режим устанавливается автоматически при включении прибора и используется при поиске подземных трубопроводов, определении глубины залегания и мест их повреждения.

При подаче на генератор тональных импульсов напряжения питания последний формирует сигнал прямоугольной формы типа "меандр" в диапазоне от 900 до 1800 Гц.

Обнаружение подземного трубопровода в режиме "Поиск" осуществляется оператором путем перемещения перед собой вправо-влево приемной магистральной антенны 20 и акустического датчика 21, расположенных на одном конце штанги 19, и движением вперед в заданном направлении. При этом необходимо следить за тем, чтобы приемная магистральная антенна 20 и акустический датчик 21 перемещались параллельно обследуемой поверхности на фиксированном расстоянии (не более 5 см от нее). Скорость их перемещения выбирается в зависимости от условий поиска и должна быть в пределах 0,1-1,0 м/с.

При появлении подземного трубопровода он намагничивается переменным полем и его поле переизлучения индуцирует в приемной магнитной антенне 8 переменное напряжение сигнала, которое поступает на выход активного узкополосного перестраиваемого фильтра сосредоточенной селекции, настроенного на частоту 1377 Гц.

Ко второму входу узкополосного перестраиваемого фильтра 11 подключен акустический датчик 9, представляющий собой акустический резонатор, внутри которого установлен пьезокерамический датчик и последовательно с ним входной усилитель 10 на полевом МДП-транзисторе, который согласует высокое выходное сопротивление датчика с низким входным сопротивлением основного усилителя.

Измерение интенсивности напряжения, выделяемого фильтром 11, осуществляется с помощью амплитудного детектора 28. В каждой точке наблюдения производится не менее двух последовательных измерений напряженности отраженного электромагнитного поля. Затем производится операция вычитания двух последовательных измерений. Для этого сигнал, соответствующий предшествующему измерению, задерживается линией задержки 29 до момента сравнения его с последующим сигналом в блоке 30 вычитания. Операция интегрирования разностного сигнала и деление разностного сигнала на проинтегрированный разностный сигнал производится в блоках 31 и 32. В блоке 34 осуществляется сравнение нормированного сигнала, задаваемого блоком 33.

Операция сравнения нормированного сигнала с заданным пороговым значением позволяет принять решение о наличии или отсутствии подземного трубопровода. Если нормированный сигнал превышает пороговое значение, то в блоке сравнения формируется постоянное напряжение, которое поступает на управляющий вход ключа 35, открывая его. В исходном состоянии ключ 35 всегда закрыт.

При этом напряжение с выхода узкополосного перестраиваемого фильтра 11 через открытый ключ 35 поступает на вход режекторного фильтра, настроенного на частоту 50 Гц, и далее после широкого полосного усилителя 13 низкой частоты - на вход активного фильтра 14 низкой частоты с частотой среза 14 КГц. При этом приемная антенна 8 и корпус приемника смонтированы на общий штанге, внутри которой размещены провода, соединяющие элементы схемы. Корпус штанги в этом случае играет роль дополнительного экрана от помех.

Кроме того, приемник трассоискателя имеет акустический датчик 9, что позволяет вести поиск подземных и скрытых коммуникаций параллельно в двух режимах: в режиме приема электромагнитного излучения и в режиме приема акустических колебаний, источником которых является перемещающаяся по магистралям среда (газ, вода, нефть и т.д.).

Таким образом, предлагаемое устройство по сравнению с прототипом обеспечивает повышение помехоустойчивости и надежности измерений в условиях сильных помех естественного и искусственного происхождения. Это достигается тем, что в каждой точке наблюдения производят не менее двух последовательных измерений напряженности электромагнитного поля, определяют разностный сигнал двух последовательных измерений, интегрируют разностный сигнал, делят разностный сигнал на проинтегрированный разностный сигнал и сравнивают полученное значение с заданным пороговым значением.

Похожие патенты RU2206106C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА И ХАРАКТЕРНОГО РАЗМЕРА ТЕЧИ В ПОДЗЕМНОМ ТРУБОПРОВОДЕ 2001
  • Кармазинов Ф.В.
  • Прядкин Е.И.
  • Рыбкин Л.В.
  • Дикарев В.И.
RU2219430C2
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ТЕЧИ В ПОДЗЕМНЫХ ТРУБОПРОВОДАХ 2001
  • Дикарев В.И.
  • Кармазинов Ф.В.
  • Койнаш Б.В.
  • Прядкин Е.И.
RU2216687C2
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА И ХАРАКТЕРНОГО РАЗМЕРА ТЕЧИ В ПОДЗЕМНОМ ТРУБОПРОВОДЕ 2001
  • Кармазинов Ф.В.
  • Прядкин Е.И.
  • Дикарев В.И.
RU2219429C2
Трассоискатель подземных коммуникаций 1991
  • Кузьменко Сергей Александрович
SU1806390A3
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ МЕСТОНАХОЖДЕНИЯ ОЧИСТНЫХ И ДИАГНОСТИЧЕСКИХ СНАРЯДОВ В ТРУБОПРОВОДЕ 2007
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
  • Рыбкин Леонид Всеволодович
RU2340831C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ТЕЧИ В ПОДЗЕМНОМ ТРУБОПРОВОДЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
  • Рыбкин Леонид Всеволодович
  • Гянджаева Севда Исмаил Кызы
RU2381467C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА УТЕЧКИ ЖИДКОСТИ ИЛИ ГАЗА ИЗ ТРУБОПРОВОДА, НАХОДЯЩЕГОСЯ В ГРУНТЕ, И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2009
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
  • Рыбкин Леонид Всеволодович
  • Михайлов Виктор Анатольевич
RU2411476C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОНАХОЖДЕНИЯ УТЕЧЕК В МАГИСТРАЛЬНЫХ ТРУБОПРОВОДАХ 2000
  • Кармазинов Ф.В.
  • Гумен С.Г.
  • Рогалев В.А.
  • Денисов Г.А.
  • Дикарев В.И.
  • Рыбкин Л.В.
  • Койнаш Б.В.
RU2190152C1
ПРОТИВОУГОННОЕ УСТРОЙСТВО ДЛЯ ТРАНСПОРТНОГО СРЕДСТВА 2006
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
  • Рыбкин Леонид Всеволодович
RU2302953C1
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ТЕЧИ В НАПОРНОМ ТРУБОПРОВОДЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Дикарев В.И.
  • Рогалев В.А.
  • Кармазинов Ф.В.
  • Гумен С.Г.
  • Денисов Г.А.
  • Койнаш Б.В.
RU2204119C2

Иллюстрации к изобретению RU 2 206 106 C1

Реферат патента 2003 года ТРАССОИСКАТЕЛЬ ПОДЗЕМНЫХ КОММУНИКАЦИЙ

Изобретение относится к области контрольно-измерительной техники, а именно к устройствам, предназначенным для бесконтактного определения местоположения, глубины залегания и мест повреждения подземных и скрытых трубопроводящих коммуникаций, таких как кабели или трубопроводы. Технический результат: повышение помехоустойчивости и надежности измерений в условиях сильных помех естественного и искусственного происхождения. Сущность изобретения: генератор тональных импульсов содержит задающий каскад, манипулятор, буферный каскад, усилитель мощности, узел согласования с линией, измерительную схему и блок питания. Приемник трассоискателя содержит магнитную антенну, узкополосный перестраиваемый фильтр сосредоточенной селекции, выходной усилитель, акустический датчик, режекторный фильтр, широкополосный усилитель низкой частоты, фильтр низкой частоты, акустический индикатор, стрелочный индикатор, узел питания, индикатор разряда батарей питания, амплитудный детектор, линию задержки, блок вычитания, блок интегрирования, блок деления, блок формирования эталонного напряжения, блок сравнения и ключ. 3 ил.

Формула изобретения RU 2 206 106 C1

Трассоискатель подземных коммуникаций, содержащий передающий блок, выполненный по схеме ключевого режима в виде задающего генератора, манипулятора, буферного каскада, усилителя мощности, узла согласования с линией измерительной схемы и блока питания, и приемный блок, включающий последовательно соединенные приемную антенну и узкополосной перестраиваемый фильтр сосредоточенной селекции, второй вход которого через входной усилитель соединен с выходом акустического датчика, последовательно соединенные режекторный фильтр, усилитель низкой частоты и активный фильтр низкой частоты, к выходу которого подключены акустический индикатор и стрелочный индикатор, отличающийся тем, что он снабжен амплитудным детектором, линией задержки, блоком вычитания, блоком интегрирования, блоком деления, блоком сравнения, блоком формирования эталонного напряжения и ключом, причем к выходу узкополосного перестраиваемого фильтра сосредоточенной селекции последовательно подключены амплитудный детектор, линия задержки, блок вычитания, второй вход которого соединен с выходом амплитудного детектора, блок интегрирования, блок деления, второй вход которого соединен с выходом блока вычитания, блок сравнения, второй вход которого соединен с выходом блока формирования эталонного напряжения, и ключ, второй вход которого соединен с выходом узкополосного перестраиваемого фильтра сосредоточенной селекции, а выход подключен к входу режекторного фильтра.

Документы, цитированные в отчете о поиске Патент 2003 года RU2206106C1

Трассоискатель подземных коммуникаций 1991
  • Кузьменко Сергей Александрович
SU1806390A3
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ТРАССЫ И ГЛУБИНЫ ЗАЛЕГАНИЯ СИЛОВЫХ ЭЛЕКТРИЧЕСКИХ КАБЕЛЕЙ И ПОДЗЕМНЫХ МЕТАЛЛИЧЕСКИХ КОММУНИКАЦИЙ 1992
  • Рябчиков В.И.
  • Прибылов В.И.
RU2046378C1
US 4112349, 05.09.1978
СУДОВОЙ ИЛЛЮМИНАТОР 0
SU288578A1

RU 2 206 106 C1

Авторы

Кармазинов Ф.В.

Прядкин Е.И.

Рыбкин Л.В.

Дикарев В.И.

Даты

2003-06-10Публикация

2002-01-14Подача