Изобретение относится к области электротехники и может быть использовано для обнаружения токов утечки и поиска мест их возникновения в зданиях промышленного и гражданского назначения, имеющих разветвленные трехфазные и однофазные участки системы электроснабжения преимущественно напряжением 0,4 кВ.
Известен способ обнаружения токов утечки и поиска мест их возникновения, при котором предварительно исследуют состояние кабельной сети с последующим выявлением мест возникновения токов утечки путем подачи сигнала с помощью импульсного генератора и фиксации сигнала акустическим датчиком [1].
Недостатками данного способа являются ограниченность функциональных возможностей, не позволяющая применить его для обнаружения токов утечки и поиска мест их возникновения в разветвленных системах электроснабжения зданий до возникновения аварийных ситуаций или полной потери работоспособности кабельной сети, недостаточная точность определения вида повреждения кабельной сети, сложность настройки применяемого оборудования, возможность получения ложных результатов проверки, т.е. низкая надежность.
Известен также способ обнаружения токов утечки и поиска мест их возникновения, при котором предварительно исследуют состояние кабельной сети с последующим выявлением мест возникновения токов утечки путем подачи сигнала звуковой частоты с помощью генератора и фиксации сигнала индукционным датчиком [2].
Недостатками данного способа также являются ограниченность функциональных возможностей, не позволяющая применить его для обнаружения токов утечки, возможности их появления и поиска мест их возникновения в разветвленных системах электроснабжения зданий до возникновения аварийных ситуаций или потери работоспособности кабельной сети, узкий диапазон определяемых видов повреждения кабельной сети, длительность настройки применяемого оборудования, необходимость дожига поврежденной жилы на оболочку.
Технической задачей изобретения является создание универсального и функционально приспособленного способа обнаружения токов утечки, возможности их появления и поиска мест их возникновения, являющихся причиной электромагнитного загрязнения в зданиях, вызванного магнитными полями промышленной частоты, когда становится невозможной нормальная работа электронного оборудования (сбои и "зависания" компьютерных сетей, "дрожание" изображения мониторов компьютеров и т.д.), и оказывающего резко негативное влияние на состояние здоровья людей, а также являющихся одной из основных причин интенсивной точечной коррозии трубопроводов систем водоснабжения и отопления зданий.
Одновременно задачей изобретения является обеспечение возможности использования современных, предписанных 7 изданием Правил устройства электроустановок (ПУЭ), Государственными стандартами Российской Федерации (ГОСТ Р 50571.10-96), инструктивными письмами Главгосэнергонадзора РФ и Главного управления государственной противопожарной службы МВД России средств обеспечения пожарной и электробезопасности - устройств защитного отключения.
Технический результат, обеспечивающий решение поставленной задачи, заключается в расширении функциональных возможностей способа для систем электроснабжения с разветвленными трехфазными и однофазными участками, упрощении его аппаратной реализации с использованием мобильного стандартного оборудования, снижении требований к квалификации исполнителей, исключении разрушающего воздействия на кабели, увеличении объема получаемой информации, упрощении последовательного анализа результатов и повышении их точности.
Сущность изобретения состоит в том, что в способе обнаружения токов утечки, возможности их появления и поиска мест их возникновения, при котором исследуют состояние кабельной сети с последующим выявлением мест возникновения токов утечки путем подачи сигнала звуковой частоты с помощью генератора и фиксации сигнала индукционным датчиком, исследуют состояние кабельной сети путем измерения дисбалансов токов в подводящем кабеле электропитания и отходящих кабелях электропитания нагрузок по меньшей мере одного электрощита здания по взаимодействию магнитного поля каждого кабеля с датчиком тока, затем проверяют возможность возникновения токов утечки и наличия гальванических связей металлоконструкций здания и нулевых рабочих проводников электрощита, непредусмотренных электрической схемой заземления и зануления здания, путем подачи сигналов постоянного тока с помощью источника постоянного тока, подключенного между металлоконструкциями и шиной нулевых рабочих проводников, и последовательного контроля наличия тока в нулевом рабочем проводнике подводящего и каждого отходящего кабеля по взаимодействию их магнитного поля с датчиком тока, а при последующей подаче сигнала звуковой частоты выводы упомянутого генератора подключают между металлоконструкциями и шиной нулевых рабочих проводников каждого электрощита и перемещают индукционный датчик вдоль проверяемого кабеля для выявления положения, соответствующего резкому изменению его сигнала.
Сигнал индукционного датчика преобразуют в акустический сигнал и выявляют положение, соответствующее резкому изменению сигнала индукционного датчика по резкому изменению громкости акустического сигнала, а в качестве датчика тока используют токоизмерительные клещи или клещи-адаптер.
При этом проверяют возможность подачи сигнала звуковой частоты при действующем состоянии системы электроснабжения путем измерения разности потенциалов между металлоконструкциями и шиной нулевых рабочих проводников каждого электрощита и сравнения измеренного значения с допустимым для генератора звуковой частоты или проверяют возможность подачи сигнала звуковой частоты при выключенном состоянии системы электроснабжения путем измерения разности потенциалов между металлоконструкциями и отсоединенным нулевым рабочим проводником каждой линии электрощита и сравнения измеренного значения с допустимым для генератора звуковой частоты.
Предпочтительно перед измерением дисбалансов токов в кабелях выявляют электрощит, являющийся источником максимального тока утечки по цепям нулевых защитных проводников и магнитного поля промышленной частоты в конкретной зоне здания, путем подачи сигнала не характерной для систем электроснабжения формы, осуществляемой с помощью источника указанного сигнала, подключенного между фазным и нулевым рабочим проводниками электрощита, и сравнения амплитудных значений сигналов, регистрируемых в исследуемой зоне.
Причем в качестве источника сигнала не характерной для данной электросистемы формы используют тиристорный блок, регулировку формы и амплитуды импульсов тока которого осуществляют путем изменения угла открытия тиристоров, а в качестве сигнала не характерной для системы электроснабжения формы предпочтительно подают последовательность импульсов в форме пиков с чередующейся полярностью и с действующим значением и временем подачи импульсов, определяемыми из условия несрабатывания устройств защиты электрощита.
В частности, амплитудные значения сигналов, регистрируемых в исследуемой зоне, измеряют с помощью датчиков тока, устанавливаемых на металлоконструкциях здания, кабелях и трубопроводах, и/или с помощью датчиков магнитного поля, устанавливаемых в обследуемом помещении здания.
Перед исследованием состояния кабельной сети выявляют признаки электромагнитного загрязнения помещений здания и/или выявляют признаки преждевременной коррозии металлоконструкций, в том числе трубопроводов.
На фиг. 1 изображена одна из проверяемых кабельных линий, на фиг.2 - схема поиска места несанкционированной гальванической связи нулевого рабочего проводника с металлоконструкциями, на фиг.3 - изменение уровня акустического сигнала вдоль трассы кабельной линии, на фиг.4 - вид сигнала не характерной для электросистемы формы, на фиг.5 - форма сигнала, принимаемого датчиком постоянного тока при подаче сигнала не характерной для электросистемы формы.
Кабельная линия 1 содержит жилу 2 - нулевой защитный проводник, жилу 3 - нулевой рабочий проводник и жилу 4 - фазный проводник, подключенные к нагрузке (не изображено). На кабельной линии установлены токоизмерительные клещи 5. К жиле 3 на фиг.1 подключен источник 6 постоянного тока, а на фиг.2 - генератор 7 звуковой частоты. Вдоль трассы кабельной линии 1 изображен индукционный датчик 8 с наушниками 9 в двух положениях. Участок 10 на фиг.2 и соответствующая ей точка 11 на фиг.3 являются местом несанкционированной гальванической связи.
Способ обнаружения токов утечки, возможности их появления и поиска мест их возникновения реализуется следующим образом.
Перед исследованием состояния кабельной сети с помощью измерителя напряженности магнитного поля выявляют признаки электромагнитного загрязнения тех помещений здания, в которых нарушена нормальная работа электронного оборудования (сбои и "зависания" компьютерных сетей, "дрожание" изображения мониторов компьютеров), а также с помощью ультразвукового дефектоскопа или визуально выявляют признаки преждевременной коррозии металлоконструкций здания, в том числе трубопроводов, например, по наличию свищей. Возможное повреждение изоляции и неконтролируемое растекание тока помимо проводов и кабелей может привести к возникновению пожара или несчастного случая. Изучается электрическая схема электроснабжения по каждому из электрощитов здания, проверяется состояние панелей электрощитов на отсутствие незатянутых оплавленных проводников и т.д.
Затем исследуют состояние кабельной сети путем измерения дисбалансов токов в подводящем кабеле электропитания и отходящих кабелях электропитания нагрузок по меньшей мере одного, но, как правило, каждого электрощита здания по взаимодействию их магнитного поля с датчиком тока, например токоизмерительными клещами 5 или клещами-адаптером, подключенными к осциллографу. Клещами 5 чувствительностью не менее 10 мкА охватывают каждый проверяемый кабель 1 и фиксируют их показания, по которым выявляют кабели, подлежащие дальнейшей проверке. Измеренный дисбаланс токов представляет собой векторную сумму токов в фазных и нулевом рабочем (N) и нулевом защитном (РЕ), если он имеется, проводниках 2, 3 кабеля 1. Как правило, если результат измерения составляет 30 миллиампер или более, необходимо продолжение исследования кабельной сети.
В качестве следующего этапа исследования проверяют возможность возникновения токов утечки, протекающих на сторонние (не связанные по схеме с электрической системой) проводящие части, и наличия некорректных, т.е. непредусмотренных электрической схемой здания, связей металлоконструкций (в том числе водопроводной, отопительной, газовой сетей) и нулевых рабочих проводников 3 электрощита. Для этого подключают между металлоконструкциями и шиной нулевых рабочих проводников 3 источник 6 постоянного тока, который настраивают на уровень сигнала порядка 4 ампер. Клещами 5 охватывают каждый проверяемый кабель 1, подают в течение 1-10 с сигнал постоянного тока с помощью упомянутого источника 6 постоянного тока и последовательно контролируют наличие тока в нулевом рабочем проводнике 3 подводящего и каждого отходящего кабеля электрощита по взаимодействию их магнитного поля с датчиком тока - токоизмерительными клещами 5 или клещами-адаптером. Как правило, если результат измерения составляет 20 миллиампер или более, необходимо дальнейшее исследование кабеля.
После этого выявляют места возникновения токов утечки путем подачи сигнала звуковой частоты предпочтительно в диапазоне 380-420 Гц и фиксации сигнала индукционным датчиком 8. Выводы генератора 7 звуковой частоты подключают между металлоконструкциями и шиной нулевых рабочих проводников 3 (т.е. панелями N и РЕ) электрощита или металлоконструкциями здания. Подача сигнала звуковой частоты возможна при действующем состоянии системы электроснабжения или при выключенном состоянии системы электроснабжения.
Соответственно проверяют возможность подачи сигнала звуковой частоты при действующем состоянии системы электроснабжения путем измерения разности потенциалов между металлоконструкциями и шиной нулевых рабочих проводников 3 каждого электрощита и сравнения измеренного значения с допустимым для генератора 7 звуковой частоты или проверяют возможность подачи сигнала звуковой частоты при выключенном состоянии системы электроснабжения путем измерения разности потенциалов между металлоконструкциями и отсоединенным нулевым рабочим проводником 3 каждой линии электрощита и сравнения измеренного значения с допустимым для генератора 7 звуковой частоты.
При подаче сигнала звуковой частоты с уровнем порядка 1-5 ампер перемещают индукционный датчик 8 вдоль трассы проверяемого кабеля 1 для выявления положения участка 10, соответствующего точке 11 резкого изменения его сигнала. При этом сигнал индукционного датчика 8 преобразуют в акустический сигнал и выявляют положение участка 10, соответствующее точке 11 резкого изменения сигнала акустического датчика, по резкому изменению громкости акустического сигнала в наушниках 9 оператора, двигающегося по трассе. Это положение и будет соответствовать месту возникновения токов утечки, т.е. участку 10 несанкционированной связи нулевого рабочего проводника 3 с металлоконструкциями здания. В этом месте следует визуально определить характер дефекта и проводить работы по его устранению. В случае проведения работ при выключенном состоянии системы электроснабжения после завершения измерений нулевой рабочий проводник 3 подключают на соответствующую панель электрощита.
После устранения дефекта необходимо провести контрольное измерение дисбаланса тока в линии как это описано выше.
Возможно также определить электрощит, цепи которого являются источниками максимального тока утечки по цепям нулевых защитных проводников 2 и магнитного поля промышленной частоты в конкретной зоне здания. Это позволит в первую очередь проводить исследования наиболее вероятного по признакам тока утечки электрощита. Выявление электрощита, являющегося источником максимального тока утечки, по цепям нулевых защитных проводников 2 и магнитного поля производится путем подачи "меченого тока" в виде сигнала не характерной для данной электросистемы формы (фиг.4). В качестве источника "меченого тока" может быть использовано устройство САТУРН-М1, представляющее собой тиристорный блок, подключаемый между фазным и нулевым рабочим проводниками 4, 3 электрощита. Регулировку формы и амплитуды импульсов тока устройства САТУРН-М1 осуществляют за счет изменения угла открытия тиристоров, а в качестве сигнала не характерной для системы электроснабжения формы предпочтительно подают последовательность импульсов в форме пиков (за период промышленной частоты 2 таких пика) с действующим значением тока порядка 60 ампер (амплитудой до 250 ампер) и временем подачи импульсов не более 1 с, определяемым из условия несрабатывания устройств защиты электрощита (выбивания выше установленных по схеме автоматов).
В частности, амплитудные значения сигналов, регистрируемых в исследуемой зоне, измеряют с помощью датчиков тока, устанавливаемых на металлоконструкциях, кабелях и трубопроводах здания, и/или с помощью датчиков магнитного поля, устанавливаемых в обследуемом помещении здания, и сравнения амплитудных значений сигналов, регистрируемых в исследуемой зоне, например, с помощью осциллографа, аналого-цифрового преобразователя и портативного компьютера.
Начало измерений синхронизируют с включением устройства САТУРН-1М с помощью мобильных средств связи, так как электрощит и помещение расположения датчиков, как правило, находятся в удаленных друг от друга местах.
На записываемых осциллограммах тока (фиг.5) или магнитного поля видны характерные всплески, обусловленные принимаемыми сигналами. Чем больше амплитуда этих всплесков, тем в большей степени вклад токов утечки отходящих линий электрощита на токи по конкретному трубопроводу и/или в уровни магнитных полей промышленной частоты в конкретном помещении. Следовательно, для скорейшего решения поставленной задачи следует в первую очередь проводить работы по выявлению мест возникновения токов утечки с потребителями тех электрощитов, от которых такие сигналы максимальны.
Таким образом, создан универсальный и функционально завершенный способ обнаружения токов утечки и поиска мест их возникновения, являющихся причиной электромагнитного загрязнения в зданиях, вызванного магнитными полями промышленной частоты, когда становится невозможной нормальная работа электронного оборудования (сбои и "зависания" компьютерных сетей, "дрожание" изображения мониторов компьютеров и т.д., и оказывающего резко негативное влияние на состояние здоровья людей, а также являющихся одной из основных причин интенсивной точечной коррозии трубопроводов систем водоснабжения и отопления зданий.
Одновременно обеспечена возможности использования современных, предписанных 7 изданием Правил устройства электроустановок, Государственными стандартами Российской Федерации, инструктивными письмами Главгосэнергонадзора РФ и Главного управления государственной противопожарной службы МВД России средств обеспечения пожарной и электробезопасности - устройств защитного отключения.
При этом расширены функциональные возможности способа для систем электроснабжения с разветвленными трехфазными и однофазными участками, упрощена его аппаратная реализация с использованием стандартного оборудования, снижены требования к квалификации исполнителей, исключено разрушающее воздействие на кабели, увеличен объем получаемой информации, упрощен последовательный анализ результатов и повышена их точность.
Источники информации
1. RU 2010253, 1994.
2. RU 2143703, 1999 (прототип).
название | год | авторы | номер документа |
---|---|---|---|
КОМПЕНСАТОР ТОКА УТЕЧКИ | 2002 |
|
RU2210153C1 |
СПОСОБ ДИАГНОСТИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ ПЕРЕМЕННОГО ТОКА И СВЯЗАННЫХ С НИМИ МЕХАНИЧЕСКИХ УСТРОЙСТВ | 2005 |
|
RU2300116C2 |
СИСТЕМА ЭЛЕКТРОМАГНИТНОГО ЭКРАНИРОВАНИЯ ЗАЩИЩАЕМОГО ПОМЕЩЕНИЯ | 2014 |
|
RU2569393C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ПОВРЕЖДЕНИЯ ПРОТЯЖЕННОГО АНОДНОГО ЗАЗЕМЛИТЕЛЯ | 2014 |
|
RU2582301C2 |
УСТРОЙСТВО ЗАЩИТЫ ЭЛЕКТРОДВИГАТЕЛЯ | 2004 |
|
RU2291538C2 |
БОРТОВОЙ СИГНАЛИЗАТОР ТОКА УТЕЧКИ ТРОЛЛЕЙБУСА | 1996 |
|
RU2099207C1 |
КОМБИНИРОВАННАЯ ГИДРОАКУСТИЧЕСКАЯ СИСТЕМА ОБНАРУЖЕНИЯ УТЕЧЕК НЕФТЕПРОДУКТОПРОВОДА | 2010 |
|
RU2462656C2 |
ИНДУКЦИОННО-РЕЗИСТИВНАЯ СИСТЕМА ЭЛЕКТРИЧЕСКОГО ОБОГРЕВА | 2016 |
|
RU2662635C2 |
СИСТЕМА ПОЖАРОТУШЕНИЯ | 2009 |
|
RU2407573C1 |
СЧЕТЧИК ЭЛЕКТРОЭНЕРГИИ | 1998 |
|
RU2166766C2 |
Использование: в области электротехники для обнаружения токов утечки и поиска мест их возникновения в зданиях промышленного и гражданского назначения, имеющих разветвленные трехфазные и однофазные участки системы электроснабжения. Технический результат - расширение функциональных возможностей. Сущность изобретения: в способе обнаружения токов утечки и поиска мест их возникновения, при котором исследуют состояние кабельной сети с последующим выявлением мест возникновения токов утечки путем подачи сигнала звуковой частоты и фиксации сигнала индукционным датчиком, исследуют состояние кабельной сети путем измерения дисбалансов токов в подводящем кабеле электропитания и отходящих кабелях электропитания нагрузок по электрощите здания, по взаимодействию их магнитного поля с датчиком тока, затем проверяют возможность возникновения токов утечки и наличия гальванических связей металлоконструкций здания и нулевых рабочих проводников электрощита, не предусмотренных электрической схемой заземления и зануления здания, путем подачи сигналов с помощью источника постоянного тока, подключенного между металлоконструкциями и шиной нулевых рабочих проводников, и контроля наличия тока в нулевом рабочем проводнике подводящего и каждого отходящего кабеля по взаимодействию их магнитного поля с датчиком тока, а при последующей подаче сигнала звуковой частоты выводы упомянутого генератора подключают между металлоконструкциями и шиной нулевых рабочих проводников каждого электрощита и перемещают индукционный датчик вдоль проверяемого кабеля для выявления положения, соответствующего резкому изменению его сигнала. 11 з.п.ф-лы, 5 ил.
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНЫХ ЗАМЫКАНИЙ В КАБЕЛЬНЫХ ЛИНИЯХ, ПРОЛОЖЕННЫХ В ЗЕМЛЕ | 1998 |
|
RU2143703C1 |
Устройство для определения повреждения изоляции кабеля | 1988 |
|
SU1638674A1 |
Устройство для определения места обрыва жил кабеля | 1987 |
|
SU1580296A1 |
СПОСОБ ОБНАРУЖЕНИЯ ЗАМЫКАНИЯ ПРОВОДА НА ЗЕМЛЮ В СЕТЯХ ПЕРЕМЕННОГО ТОКА | 1934 |
|
SU43961A1 |
УСТРОЙСТВО для КОНТРОЛЯ ТОКА ЗАМЫКАНИЯ НА ЗЕЛ11ЛЮ ПЕРЕДВИЖНОЙ КАБЕЛЬНОЙ ЛИНИИ | 0 |
|
SU284157A1 |
US 5469067 А, 21.11.1995. |
Авторы
Даты
2003-07-10—Публикация
2001-12-05—Подача