Изобретение относится к солнечной энергетике и может найти применение в гелиоустановках для получения электрической энергии, а также в солнечных установках для нагрева воды или другого теплоносителя.
Известны устройства, содержащие различные концентраторы с криволинейными образующими, оптически сопряженными с принимающей поверхностью поглотителей солнечной энергии [1], [2] и [3].
Недостатком таких устройств является неравномерное распределение сконцентрированного солнечного излучения на принимающей поверхности поглотителей, что является особенно критичным, если в качестве приемника солнечного излучения используется фотоэлектрический преобразователь.
Наиболее близким по технической сущности к предлагаемому изобретению, выбранным авторами за прототип, является гелиоэнергетический модуль, содержащий несущую конструкцию, закрепленный на ней цилиндрический концентратор из набора плоских зеркальных фацет, линейный приемник концентрированного излучения, установленный по фокусной линии цилиндрического концентратора [4].
Недостатком такого гелиоэнергетического модуля является тот факт, что излучение, поступающее на линейный фотоэлектрический приемник, имеет широкий спектральный состав, а поскольку спектральная чувствительность линейного фотоэлектрического приемника ограничена, то эффективность использования солнечного излучения ограничена.
С помощью предлагаемого изобретения достигается технический результат, заключающийся в повышении эффективности преобразования солнечной энергии на линейном фотоэлектрическом приемнике из-за уменьшения нагрева фотоэлектрического приемника тепловым излучением.
В соответствии с предлагаемым изобретением указанный технический результат достигается тем, что в гелиоэнергетическом модуле, состоящем из цилиндрического концентратора, образованного набором плоских зеркальных фацет, установленных на несущей конструкции, и линейного фотоэлектрического приемника, расположенного на фокусной линии указанного концентратора, с тыльной стороны основного цилиндрического концентратора установлен дополнительный цилиндрический концентратор, на фокусной линии которого установлен тепловой поглотитель, при этом отражающее покрытие плоских фацет основного цилиндрического концентратора выполнено селективным в соответствии со спектральной чувствительностью линейного фотоэлектрического приемника, а дополнительный цилиндрический концентратор представляет собой набор плоских фацет, установленных на несущей параболоцилиндрической конструкции перпендикулярно к образующей поверхности параболического цилиндра, а сама параболоцилиндрическая конструкция обращена к основному цилиндрическому концентратору своей внешней выпуклой стороной.
На чертеже (фиг.1) схематически показан предлагаемый гелиоэнергетический модуль, содержащий цилиндрический концентратор 1, образованный набором плоских зеркальных фацет 2, установленных по его внутренней поверхности, и линейный фотоэлектрический приемник 3, расположенный вдоль фокусной линии указанного цилиндрического концентратора.
На чертеже (фиг.2) показано положение одной из плоских зеркальных фацет на дополнительном цилиндрическом концентраторе 4.
В предлагаемом гелиоэнергетическом модуле с тыльной стороны цилиндрического концентратора 1 установлен дополнительный цилиндрический концентратор 4, параболоцилиндрическая поверхность которого обращена к основному своей внешней выпуклой стороной. На несущей конструкции этого дополнительного концентратора 4 перпендикулярно к его параболоцилиндрической поверхности установлены плоские отражательные фацеты 5, а на фокусной линии этого концентратора 4 установлен тепловой поглотитель 6.
Предлагаемый гелиоэнергетический модуль работает следующим образом.
Система наведения, (на чертеже не показана), производит ориентацию цилиндрического концентратора 1 на Солнце по углу места. После наведения на Солнце, то есть когда его излучение падает на его поверхность параллельно оси цилиндрообразующей параболы концентратора, оно, отразившись от зеркальной поверхности плоских фацет 2, попадает на линейный фотоэлектрический приемник 3, поскольку фацеты установлены по внутренней поверхности параболического цилиндра 1, а линейный фотоэлектрический приемник 3 - вдоль фокусной линии указанного параболического цилиндра 1.
Отражательная поверхность плоских зеркальных фацет 2 имеет селективный коэффициент отражения, согласованный со спектральной чувствительностью линейного фотоэлектрического приемника 3. Как правило, спектральная чувствительность фотоэлектрического приемника (фотоэлемента) лежит в ближней ультрафиолетовой и видимой областях спектра. Инфракрасное излучение, являясь тепловым, попадая на фотоэлектрический приемник, приводит к его нагреву и понижению эффективности фотоэлектрического преобразования. Поэтому отражательное покрытие зеркальных фацет должно быть прозрачно в этой области спектра.
Инфракрасная часть солнечного излучения, проходя сквозь фацеты, попадает на дополнительный цилиндрический концентратор 4 и фокусируется им на тепловом поглотителе 6.
В данном случае дополнительный цилиндрический концентратор 4 выполнен в виде зеркального отражателя и представляет собой набор плоских фацет 5, установленных на несущей параболоцилиндрической конструкции 4 перпендикулярно к образующей поверхности параболического цилиндра, а сама параболоцилиндрическая конструкция 4 обращена к основному цилиндрическому концентратору 1 своей внешней выпуклой стороной.
Рассмотрим один из элементов, образующих дополнительный цилиндрический концентратор 4 (см. фиг.2). Плоская фацета 5 установлена на параболоцилиндрической конструкции 4 перпендикулярно к параболе, образующей поверхность цилиндрического концентратора 4.
Как известно, в параболе касательная А-А является биссектрисой угла между диаметром В-В и фокальным радиусом N-F. Таким образом, как видно из чертежа (фиг. 2), угол α равен углу β, а значит все лучи (направление В-В), прошедшие через основной цилиндрический концентратор 1 на дополнительный цилиндрический концентратор 4, соберутся всеми его отражательными фацетами 5 в фокальной области параболического цилиндра 4, несущего эти отражательные фацеты 5. В этой области установлен тепловой поглотитель 6, который и поглощает тепловое излучение Солнца.
Такая схема разделения солнечного излучения на два диапазона позволяет повысить эффективность фотоэлектрического преобразования линейного приемника 3, исключив его нагрев тепловым излучением, а затем использовать это излучение в тепловом поглотителе 6 дополнительного цилиндрического концентратора 4.
В настоящее время по материалам заявки изготовлен опытный образец гелиоэнергетического модуля и проводятся его натурные испытания на полигоне в поселке Грибанове Московской области.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. А.с. 1451475, Россия, МПК F 24 J 2/10.
2. Пат. 404753, Австрия, МКП F 24 J 2/14.
3. Заявка 19546913, Германия, МПК F 24 J 2/14, F 24 J 2/12.
4. А.с. 1449785, Россия, МПК F 24 J 2/38 - прототип.
название | год | авторы | номер документа |
---|---|---|---|
Гелиоэнергетическая установка | 2002 |
|
RU2222755C1 |
ГЕЛИОУСТАНОВКА | 2001 |
|
RU2210038C2 |
ГЕЛИОЭНЕРГЕТИЧЕСКИЙ МОДУЛЬ | 2000 |
|
RU2188364C2 |
МОДУЛЬ СОЛНЕЧНОЙ ЭЛЕКТРОСТАНЦИИ | 2006 |
|
RU2331822C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕЛИОУСТАНОВКИ (ВАРИАНТЫ) | 2007 |
|
RU2338127C1 |
МОДУЛЬ СОЛНЕЧНОЙ ЭЛЕКТРОСТАНЦИИ | 2010 |
|
RU2437036C1 |
ГЕЛИОЭНЕРГЕТИЧЕСКИЙ МОДУЛЬ ДЛЯ ПРЕОБРАЗОВАНИЯ ПРИНИМАЕМОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ И СИСТЕМА ЕГО ОРИЕНТАЦИИ | 2004 |
|
RU2270964C1 |
ФОТОЭЛЕКТРИЧЕСКИЙ СОЛНЕЧНЫЙ МОДУЛЬ ДЛЯ СЛЕЖЕНИЯ ЗА ПОЛОЖЕНИЕМ СОЛНЦА И УПРАВЛЕНИЯ ОРИЕНТАЦИЕЙ СОЛНЕЧНЫХ ФОТОЭЛЕКТРИЧЕСКИХ МОДУЛЕЙ | 2009 |
|
RU2416767C1 |
ГЕЛИОУСТАНОВКА | 2006 |
|
RU2325597C2 |
ГЕЛИОЭНЕРГЕТИЧЕСКИЙ МОДУЛЬ ДЛЯ ПРЕОБРАЗОВАНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ОТ УДАЛЕННОГО ИСТОЧНИКА СВЕТОВОГО ИЗЛУЧЕНИЯ (ВАРИАНТЫ) | 2005 |
|
RU2301379C2 |
Изобретение относится к солнечной энергетике и может найти применение в гелиоустановках для получения электрической энергии и в нагревательных солнечных установках. В соответствии с изобретением в гелиоэнергетическом модуле, состоящем из цилиндрического концентратора с набором плоских зеркальных фацет, установленных на несущей конструкции, и линейного фотоэлектрического приемника на фокусной линии указанного концентратора, с тыльной стороны основного цилиндрического концентратора установлен дополнительный цилиндрический концентратор, на фокусной линии которого установлен тепловой поглотитель, при этом отражающее покрытие плоских фацет основного цилиндрического концентратора выполнено селективным, в соответствии со спектральной чувствительностью линейного фотоэлектрического приемника, а дополнительный цилиндрический концентратор представляет собой набор плоских фацет, установленных на несущей параболоцилиндрической конструкции перпендикулярно к образующей поверхности параболического цилиндра, а сама параболоцилиндрическая конструкция обращена к основному цилиндрическому концентратору своей внешней выпуклой стороной. Изобретение обеспечивает повышение эффективности преобразования солнечной энергии путем уменьшения нагрева приемника. 1 з.п. ф-лы, 2 ил.
Гелиоустановка | 1986 |
|
SU1449785A1 |
Состав для несминаемой отделки хлопчатобумажных и вискозных текстильных материалов | 1979 |
|
SU785400A1 |
СОЛНЕЧНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ (ВАРИАНТЫ) | 1998 |
|
RU2133415C1 |
СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 1999 |
|
RU2154243C1 |
Авторы
Даты
2003-08-10—Публикация
2001-11-14—Подача