УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ИМПЕДАНСА ДВУХПОЛЮСНИКА НА СВЧ Российский патент 2003 года по МПК G01R27/04 

Описание патента на изобретение RU2210082C2

Изобретение относится к электронной технике, а именно к измерительной технике на СВЧ.

Для эффективного использования возможностей проектирования устройств СВЧ необходимо проводить измерения импедансов диодов и входных и выходных сопротивлений транзисторов на СВЧ в зависимости от частоты f. Наиболее просто могут быть измерены малосигнальные импедансные характеристики Z(f).

Известно устройство, содержащее генератор СВЧ-сигналов и схему, содержащую измерительную линию, включенную между генератором и двухполюсником. На частоте f с помощью измерительной линии измеряют две характеристики: модуль |Г(f)| и фазу ϕ(f) коэффициента отражения, а импеданс двухполюсника Z(f) затем рассчитывают по формулам [1].

Недостатком устройства является то, что процесс измерения импеданса в таком устройстве занимает много времени, так как для определения Z(f)= R(f)+jX(f) в рабочем интервале частот необходимо измерять две характеристики: модуль |Г(f)| и фазу ϕ(f).

Кроме того использование измерительной линии затрудняет автоматизацию измерений.

Известно устройство - прототип, содержащее генератор СВЧ-сигнала, измерители модуля коэффициента передачи и модуля коэффициента отражения и схему, состоящую из центрального проводника, отрезка линии длиной l, подключенного к центральному проводнику с помощью pin-диода, и второго отрезка линии длиной l, гальванически соединенного с центральным проводником, а измеряемый двухполюсник включен на конце второго отрезка линии [2].

На частоте f в рабочем интервале частот измеряют значения модуля коэффициента передачи |T(f)| и затем по формулам рассчитывают величину Z(f). Отрезок линии, включенный в схему с помощью pin-диода, используют для достижения однозначности в определении знака реактивной составляющей импеданса X(f).

По сравнению с аналогом в данном устройстве легко осуществить автоматизацию измерений.

Недостатком данного устройства является необходимость измерения модуля коэффициента |Г(f)| и модуля коэффициента передачи |T(f)|, для чего используют два типа измерителей: измеритель модуля коэффициента отражения и измеритель модуля коэффициента передачи.

К недостаткам устройства относится также наличие в нем существенной неоднородности: Т-образного соединения центрального проводника и второго отрезка линии, что приводит к увеличению погрешности измерения импеданса.

Техническим результатом предлагаемого изобретения является существенное упрощение процесса измерения при возможности автоматизации этого процесса.

Технический результат достигается тем, что в известном устройстве для определения импеданса двухполюсника на СВЧ, содержащем генератор СВЧ-сигнала, измеритель модуля коэффициента отражения и схему, состоящую из центрального проводника, отрезка линии длиной l, подключенного к центральному проводнику с помощью pin-диода и второго отрезка линии длиной l, схема содержит дополнительный pin-диод, с помощью которого второй отрезок линии длиной l подключен к центральному проводнику в месте, отстоящем от первого отрезка на расстоянии l, а измеряемый двухполюсник включен на конце центрального проводника.

Определение импеданса двухполюсника в предлагаемом устройстве основано на следующих теоретических предпосылках.

Между СВЧ-генератором и измеряемым двухполюсником, включенным на конце центрального проводника, располагается схема, содержащая переменный параметр аi. Схема описывается обобщенной матрицей передачи , где i - число значений параметра аi. Модуль коэффициента отражения на частоте f определяется выражением

где Z= Z(f)= R(f)+jX(f) - импеданс измеряемого двухполюсника; Zo - сопротивление генератора, равное волновому сопротивлению центральной линии; Аi, Вi, Сi, Di - элементы матрицы .

Выражение (l) можно преобразовать к виду:
Pi(R2+X2)+2miR+2nix+qi=0, (2)
где коэффициенты рi, mi, ni, qiсвязаны с элементами матрицы и с квадратом модуля коэффициента отражения |Гi| соотношениями
pi = |Гi|2|Di+CiZo|2-|Di-CiZo|2, (3)
qi = |Гi|2|Bi+AiZo|2-|Bi-AiZo|2,


Измеряя на частоте f модуль коэффициента отражения |Гi(f)| при двух значениях параметра аi1 и а2), получим систему двух уравнений типа (2). Решение ее сводится к решению квадратного уравнения для R(f)
aR2+bR+c=0 (4)
и вычислению X(f) из формулы
X=-RM/N-Q/(2N), (5)
где a=p1[1+(M/N)2],
b=2p1MQ/N2+2m1-2n1M/N,
c=p1Q2/N2-2n1Q/N+q1,
M=m1p2-m2p1,
N=n1p2-n2p1,
Q=q1p2-q2p1.

Для повышения точности в определении R и Х проводятся измерения |Г(f)| при более чем двух значениях.

В предлагаемом устройстве в качестве параметров выбраны два отрезка линии длиной l, отстоящие друг от друга на расстоянии 1. При этом изменение параметра достигается путем подключения или отключения от центрального проводника этих отрезков линий с помощью pin-диодов. Таким образом получается 4 варианта схемы (i=1, 2, 3, 4).

На частоте f измеряют значения модуля коэффициента отражения |Гi| для каждого варианта схемы (i=1, 2, 3, 4). Разбивая их на пары и проводя расчеты по формулам (2)...(5), на каждой частоте анализа f из рабочего интервала частот, получаем 6 пар значений R(f) и X(f). Усредняя эти значения по всем парам, находим окончательные величины R и X. Это усреднение позволяет повысить точность определения активной R и реактивной Х составляющих импеданса двухполюсника.

Введение в устройство дополнительного pin-диода и второго отрезка линии дает возможность исключить использование одного из измерителей - измерителя модуля коэффициента передачи, что позволяет упростить процесс измерения.

В предлагаемом устройстве отрезки линий соединены с центральным проводником с помощью pin-диодов, что позволит исключить Т-образное сочленение проводников в схеме, которое приводило к увеличению погрешности в определении импеданса. Для снижения этой погрешности требовалось проводить дополнительные измерения. Исключение из устройства Т-бразного сочленения позволит упростить процесс измерения, а следовательно, снизить погрешность измерения.

Устройство для определения импеданса двухполюсника на СВЧ поясняется фиг.1, где генератор СВЧ-сигнала 1, измеритель модуля коэффициента отражения 2, расположенный с генератором на одном конце центрального проводника 3, на другом конце центрального проводника включен исследуемый двухполюсник 4, а схема содержит два отрезка линии 5 длиной l, подключенные к центральному проводнику с помощью pin-диодов 6 и отстоящие друг от друга на расстоянии 1.

На фиг. 2 приведены зависимости от частоты квадрата модуля коэффициента отражения (в дБ) для четырех возможных вариантов схемы в зависимости от состояний двух pin-диодов (включены-отключены), а на фиг.3 - рассчитанные значения активной R(f) и реактивной X(f) составляющих импеданса диода, усредненные по всем вариантам схемы.

Пример
В качестве примера рассмотрен процесс определения импеданса бескорпусного диода Ганна - 4. Используют микрополосковую схему, выполненную на поликоровой подложке (ε=9,6) толщиной h=0,5 мм с одинаковой шириной всех проводников 0,48 мм. Основание диода Ганна располагают на земляной плате, а верхний электрод диода Ганна соединяют с центральным проводником 3 с помощью золотого проводника длиной 1 мм и диаметром 40 мкм. Расстояние от места подключения диода Ганна до первого отрезка линии составляет 2,85 мм, а длины линий 5 и расстояние между ними - 2,5 мм. В качестве pin-диодов 6 используют бескорпусные диоды 2А533А с сопротивлением R=2Ом и емкостью С=0,02 пФ. Переключающие напряжения составляют 0 и - 5 В. Модули коэффициентов отражения |Г(f)| измеряют в рабочем интервале частот 8...12 ГГц с помощью панорамного измерителя КСВН и ослабления 2 типа Р2-67.

Предлагаемое устройство по сравнению с прототипом позволит:
- упростить процесс измерения, так как используется только измеритель модуля коэффициента отражения;
- снизить погрешность в определении импеданса двухполюсника, так как в устройстве отсутствует Т-образное соединение отрезков линии;
- снизить погрешность в определении импеданса двухполюсника из-за сравнительно большого числа возможных вариантов схем и возможности применения статистических методов усреднения результатов измерений.

Кроме того возможна автоматизация этого процесса вследствие использования электрически управляемых pin-диодов.

Источники информации
1. Измерения на СВЧ. / Перевод под ред. В.Б. Штейншлейгера/ М: Сов. радио. - 1952.-С.87.

2. Патент РФ 2088946, приоритет от 24.07.92 г. МКИ G 01 R 31/26 -прототип.

Похожие патенты RU2210082C2

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПОЛНОГО СОПРОТИВЛЕНИЯ И ШУМОВЫХ ПАРАМЕТРОВ ДВУХПОЛЮСНИКА НА СВЧ 2012
  • Балыко Александр Карпович
  • Королев Александр Николаевич
  • Мякиньков Виталий Юрьевич
  • Потапова Татьяна Ивановна
  • Калинкина Галина Алексеевна
RU2510035C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПОЛНОГО СОПРОТИВЛЕНИЯ ДВУХПОЛЮСНИКА НА СВЧ 2012
  • Балыко Александр Карпович
  • Королев Александр Николаевич
  • Мякиньков Виталий Юрьевич
  • Сафонова Елена Олеговна
  • Бувайлик Елена Васильевна
RU2485527C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ИМПЕДАНСА ДВУХПОЛЮСНИКА НА СВЧ 1992
  • Балыко А.К.
  • Калинина О.Л.
  • Пчелин В.А.
  • Пругер А.А.
RU2088946C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ШУМОВЫХ ПАРАМЕТРОВ ЧЕТЫРЕХПОЛЮСНИКА СВЧ 2012
  • Балыко Александр Карпович
  • Королев Александр Николаевич
  • Мякиньков Виталий Юрьевич
  • Сафонова Елена Олеговна
  • Гурычев Владимир Александрович
RU2499274C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ШУМОВЫХ ПАРАМЕТРОВ ЧЕТЫРЕХПОЛЮСНИКА СВЧ 2012
  • Балыко Александр Карпович
  • Королев Александр Николаевич
  • Мякиньков Виталий Юрьевич
  • Сафонова Елена Олеговна
  • Гурычев Владимир Александрович
RU2498333C1
ЗАЩИТНОЕ УСТРОЙСТВО СВЧ 2012
  • Балыко Александр Карпович
  • Королев Александр Александрович
  • Мякиньков Виталий Юрьевич
  • Мышлецова Наталья Евгеньевна
  • Хитрова Надежда Николаевна
RU2517722C1
ЗАЩИТНОЕ УСТРОЙСТВО СВЧ 2012
  • Балыко Александр Карпович
  • Королев Александр Александрович
  • Мякиньков Виталий Юрьевич
  • Потапова Татьяна Ивановна
  • Калинкина Галина Алексеевна
RU2504871C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ РАССЕЯНИЯ ЧЕТЫРЕХПОЛЮСНИКА НА СВЧ 2012
  • Балыко Александр Карпович
  • Королев Александр Николаевич
  • Мякиньков Виталий Юрьевич
  • Сафонова Елена Олеговна
  • Бувайлик Елена Васильевна
RU2494408C1
ЗАЩИТНОЕ УСТРОЙСТВО СВЧ 2001
  • Балыко А.К.
  • Мальцев В.А.
  • Рудый Ю.Б.
RU2189670C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ШУМОВЫХ ПАРАМЕТРОВ ТРАНЗИСТОРОВ НА СВЧ 1992
  • Балыко А.К.
  • Пчелин В.А.
  • Тагер А.С.
RU2085960C1

Иллюстрации к изобретению RU 2 210 082 C2

Реферат патента 2003 года УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ИМПЕДАНСА ДВУХПОЛЮСНИКА НА СВЧ

Изобретение относится к электронной технике. Техническим результатом является упрощение процесса измерения при возможности автоматизации за счет исключения необходимости использования одного из измерителей - измерителя модуля коэффициента передачи, что достигается введением в схему второго pin-диода, с помощью которого второй отрезок линии подключен к центральному проводнику в месте, отстоящем от первого отрезка на расстоянии l, а измеряемый двухполюсник включен на конце центрального проводника. 3 ил.

Формула изобретения RU 2 210 082 C2

Устройство для определения импеданса двухполюсника на СВЧ, содержащее генератор СВЧ-сигнала, измеритель модуля коэффициента отражения и схему, состоящую из центрального проводника, отрезка линии длиной l, подключенного к центральному проводнику с помощью pin-диода, и второго отрезка линии длиной l, при этом измеритель модуля коэффициента отражения и генератор СВЧ-сигнала расположены на одном конце центрального проводника, отличающееся тем, что схема содержит дополнительный pin-диод, с помощью которого второй отрезок линии длиной l подключен к центральному проводнику в месте, отстоящем от первого отрезка на расстоянии l, а измеряемый двухполюсник включен на противоположном от генератора СВЧ-сигнала конце центрального проводника.

Документы, цитированные в отчете о поиске Патент 2003 года RU2210082C2

УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ИМПЕДАНСА ДВУХПОЛЮСНИКА НА СВЧ 1992
  • Балыко А.К.
  • Калинина О.Л.
  • Пчелин В.А.
  • Пругер А.А.
RU2088946C1
ИЗМЕРИТЕЛЬ ПАРАМЕТРОВ ДВУХПОЛЮСНИКОВ 1999
  • Передельский Г.И.
RU2156982C1
US 5099201 A, 24.03.1992
US 4278933 A, 14.07.1981
KR 9511776 A, 10.10.1995.

RU 2 210 082 C2

Авторы

Балыко А.К.

Мальцев В.А.

Рудый Ю.Б.

Даты

2003-08-10Публикация

2001-08-09Подача