Область техники
Изобретение относится к реакторной технологии получения радионуклидов для ядерной медицины.
При диагностике и лечении онкологических заболеваний все более широкое применение находят α-излучающие радионуклиды. Это объясняется, прежде всего, ядерно-физическими свойствами этих нуклидов - большой начальной энергией α-частиц (5-8 МэВ), коротким пробегом этих частиц в биологических тканях (десятки микрон) и высоким уровнем энерговыделения в области локализации распадающихся нуклидов. Носители α-излучающих радионуклидов (монокланальные антитела, пептиды) с высокой специфичностью позволяют доставлять их точно в опухолевый узел или метастатический очаг. Возможно селективное облучение патологических объектов с минимальной лучевой нагрузкой на окружающие доброкачественные ткани.
Настоящее изобретение может быть использовано для создания генератора α-излучателей актиний-225/висмут-213 (225Ас/213Bi). Актиний-225 может быть получен в генераторах 229Th/225Ra/225Ac. Таким образом, ключевое значение приобретает вопрос производства 229Th.
Предшествующий уровень техники.
В настоящее время для диагностических и терапевтических целей в ядерной медицине апробировано около 200 различных радионуклидов. Их получают за счет образования в реакциях взаимодействия заряженных частиц или нейтронов с веществом мишени. Мишень для облучения размещают в различного типа ускорителях или ядерных реакторах.
Одно из наиболее перспективных направлений в ядерной медицине - использование α-излучателей в точечной радиоиммунотерапии. Использование короткоживущих α-нуклидов для терапии онкологических заболеваний представляет несомненный интерес благодаря специфичным ядерно-физическим и химическим свойствам этих нуклидов. Ведется интенсивный поиск радионуклидов, обладающих высокой линейной передачей энергии (ЛПЭ) при ограниченной длине пробега в биологической ткани.
При радиоиммунотерапии, особенно на начальной стадии появления злокачественной опухоли, эффективно использование радионуклида 213Bi - α-излучателя с высокой ЛПЭ (~80 кэВ/мкм) и коротким пробегом частиц в биологической ткани (50-90 мкм). Предшественником 213Bi в цепочке распада является радионуклид 225Ас с периодом полураспада Т1/2=10 суток [В.А. Халкин и др. Радионуклиды для радиотерапии. Радиохимия, 1997, т. 39, 6, стр. 481-490] . Разделение радионуклидов 225Ас и 213Bi производят с использованием ионообменных смол. Суммарное содержание радионуклидных примесей в α-препарате 213Bi составляет не более 20 мкг/мл, при этом объемная активность препарата обеспечивается в широких пределах от 1 до 10 мКи/мл [Дубинкин Д.О., Сметанин Э. Я. и др. VI-я Всероссийская (международная) научная конференция "Физико-химические процессы при селекции атомов и молекул", 1-5 октября 2001, г. Звенигород, стр. 42].
В свою очередь 225Ас является дочерним продуктом распада радионуклида 229Th. Таким образом, для получения радионуклида 213Bi необходимо создание генераторной системы 229Th/225Ac/213Bi. Поэтому определяющее значение приобретает процесс получения 229Th как исходного материала.
Известны два способа получения 229Th в значительных количествах:
- радиохимическое выделение из "старых" запасов 233U;
- в высокопоточных реакторах.
За прототип выбран метод получения 229Th в ядерном реакторе путем облучения стартовой мишени с радионуклидом 226Ra за счет многократного захвата нейтронов [В.Ю. Баранов, Н.С. Марченков. Нуклидная программа РНЦ "Курчатовский Институт": прошлое, настоящее, будущее. Конверсия в машиностроении, 2000, 3, стр. 38-47].
Однако этот способ имеет существенные недостатки:
- получение 229Th из 226Ra является многостадийным процессом за счет трехкратного захвата нейтронов;
- в готовом продукте присутствует большая (до 50%) доля примесного радионуклида 228Th, значительно осложняющего радиохимическую стадию приготовления медицинского препарата на основе 213Bi.
Раскрытие изобретения
В основу изобретения положены требования технологичности нового способа получения радионуклида 229Th при сохранении высокой удельной активности и радиоизотопной чистоты, возможность использования для его производства природного изотопа 230Th - продукта естественного распада 238U.
Поставленная задача решена тем, что в способе получения радионуклида 229Th, являющегося стартовым радионуклидом при производстве терапевтического радиофармпрепарата на основе 213Bi, включающем облучение мишени, в качестве материала мишени используют природный изотоп тория 230Th, мишень размещают в циклотроне и облучают пучком протонов, и в процессе пороговой ядерной реакции 230Th(p,pn)229Th накапливают в ней целевой радиоизотоп торий-229.
В качестве материала мишени могут быть использованы соединения 230ThF4, или 230ThО2, или металлический торий-230.
В предлагаемом способе производства радионуклида 229Th использовано существование природного радионуклида 230Th - продукта естественного распада 238U. Известно, что при радиоактивном распаде 238U в цепочке дочерних продуктов, кроме изотопа 234U, образуются долгоживущие α-излучатели: изотоп 230Th, а также изотоп 226Ra с периодами полураспада соответственно 8,1•104 и 1,59•103 лет. Содержание этих изотопов в природном уране оценивается следующими цифрами: радия 352 мг/т урана и тория 17,9 г/т урана. При переработке урановых руд, описанных выше, α-радиоактивные изотопы выделяют как побочные продукты в производстве урана [В.Б. Шевченко, Б.Н. Судариков. Технология урана. М.: Госатомиздат, 1961].
Известно, что при обогащении гексафторида урана UF6 торий отделяется и остается в "огарках" при фторировании [Матвеев Л.В. и др. Проблема накопления 232U и 236Рu в ядерном реакторе, "Атомная техника за рубежом", 1980, 4, стр. 10-17].
Основным источником 230Th, доступным для использования в настоящее время, являются отходы отвального UF6 в разделительном производстве, где в процессе длительного хранения идет его накопление [Смирнов Ю.В. и др. Обработка, удаление и утилизация отходов горнометаллургического производства, "Атомная техника за рубежом", 1981, 3, стр. 15-20].
При облучении мишени, содержащей торий-230, в циклотроне в результате ядерной реакции 230Th(n, рn)226Th в мишени накапливают целевой радионуклид 229Th.
Наколенный в мишени 229Th имеет генетическую цепочку распада элементов, приводящую к радионуклиду 213Bi, который используют в ядерной медицине [В.А Халкин и др. Радионуклиды для радиотерапии. Радиохимия, 1997, т. 39, 6, стр. 483, рис. 1].
Полученный в результате ядерной реакции (p,pn) радионуклид 229Th выдерживают в течение времени, достаточного для накопления в мишени его дочернего продукта распада 225Ас, после чего 225Ас извлекают из мишени методом жидкостной многоступенчатой экстракции и сорбции тория, радия и актиния на анионите. Актиний-225 количественно сорбируется на анионите, а радий и другие продукты распада отделяются в виде раствора рафината. Полученный 225Ас используют для создания медицинского генератора 225Ac/213Bi.
Предлагаемый способ создания α-излучающего медицинского генератора для радиоиммунотерапии обладает существенным достоинством по сравнению с описанными в литературе:
- целевой радионуклид 229Th получают в результате однократного захвата нейтрона;
- примесь радионуклида 228Th сведена к минимуму;
- целевой радионуклид 229Th получают, используя в качестве исходного материала побочный продукт при переработке урановой руды 230Th.
Пример осуществления изобретения
Мишень, содержащую 230Th, устанавливают в циклотроне. В процессе облучения мишени в результате пороговой ядерной реакции 230Th(p,pn)229Th накапливают целевой радионуклид, являющийся начальным элементом цепочки распада радионуклидов, приводящей к получению 213Bi.
После облучения мишень с полученным в ней радионуклидом 229Тh извлекают из канала и выдерживают в течение месяца. В процессе радиохимической обработки материала мишени в сильно кислых растворах радионуклиды сорбируют на анионите. При сорбции радий и другие продукты распада отделяют в виде раствора рафината.
Рафинат, содержащий большое количество радия, используют для дополнительной наработки и выделения актиния-225.
При многоцикличном использовании тория-229 его выдержку для накопления актиния-225 осуществляют в водном растворе, а не на анионите, из-за его деструкции под действием короткоживущих α-излучателей.
Для получения актиния-225 высокой нуклидной чистоты проводят два цикла сорбционного разделения с использованием колонок различной геометрии.
В процессе радиохимического передела получают Актиний-225 в виде азотнокислого или солянокислого раствора со следующим содержанием радионуклидных примесей:
225Ra<1•10-4%,
229Th<1•10-7%.
Остальные радионуклиды - в равновесии.
При этом выделяют 213Bi высокой чистоты.
Предложенный способ получения 229Th - стартового нуклида для последующего получения α-излучающего радионуклида медицинского назначения 213Bi позволяет по сравнению со способом, выбранным за прототип, уменьшить трудоемкость процесса, использовать в качестве исходного материала побочный продукт уранового производства 230Th, снизить содержание сопутствующих радионуклидов, например 228Тh. При этом процесс получения целевого радионуклида осуществляют на ядерно-безопасной установке.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ТОРИЙ-229 - СТАРТОВОГО МАТЕРИАЛА ДЛЯ ПРОИЗВОДСТВА ТЕРАПЕВТИЧЕСКОГО ПРЕПАРАТА НА ОСНОВЕ РАДИОНУКЛИДА ВИСМУТ-213 | 2001 |
|
RU2210124C2 |
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ТОРИЙ-229 - СТАРТОВОГО МАТЕРИАЛА ДЛЯ ПРОИЗВОДСТВА ТЕРАПЕВТИЧЕСКОГО ПРЕПАРАТА НА ОСНОВЕ РАДИОНУКЛИДА ВИСМУТ-213 | 2001 |
|
RU2199165C1 |
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ВИСМУТ-213 | 2010 |
|
RU2430441C1 |
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ВИСМУТ-212 | 2010 |
|
RU2439727C1 |
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА УРАН-230 ДЛЯ ТЕРАПИИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ | 2008 |
|
RU2362588C1 |
СПОСОБ ПОЛУЧЕНИЯ АКТИНИЯ-225 | 2017 |
|
RU2666343C1 |
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ТОРИЙ-228 | 2012 |
|
RU2499311C1 |
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДОВ Th-228 И Ra-224 ДЛЯ ПРОИЗВОДСТВА ТЕРАПЕВТИЧЕСКОГО ПРЕПАРАТА НА ОСНОВЕ РАДИОНУКЛИДОВ Bi-212 | 2006 |
|
RU2317607C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЧИСТОГО Ac ПОЛУЧАЕМОГО ИЗ ОБЛУЧЕННЫХ Ra-МИШЕНЕЙ | 2007 |
|
RU2432632C2 |
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ВИСМУТ-212 | 2010 |
|
RU2430440C1 |
Технический результат: сохранение высокой удельной активности и радиоизотопной чистоты радионуклида 229Th. Способ включает облучение мишени, содержащей природный изотоп тория 230Th, пучком протонов. Мишень размещают в циклотроне. Целевой радиоизотоп торий-229 накапливают в мишени в процессе пороговой ядерной реакции 230Th(р,рn). В качестве материала мишени используют соединения 230ThF4, или 230ThO2, или металлический торий-230. Изобретение относится к реакторной технологии получения радионуклидов для ядерной медицины. 1 з.п. ф-лы, 1 ил.
БАРАНОВ В.Ю., МАРЧЕНКОВ Н.С | |||
Нуклидная программа РНЦ "Курчатовский институт": прошлое, настоящее, будущее | |||
Конверсия в машиностроении | |||
ЩИТОВОЙ ДЛЯ ВОДОЕМОВ ЗАТВОР | 1922 |
|
SU2000A1 |
СПОСОБ СЕЛЕКТИВНОГО КОНЦЕНТРИРОВАНИЯ ТОРИЯ ИЗ ТОРИЙСОДЕРЖАЩЕГО МАГНИЕВОГО ШЛАКА | 1992 |
|
RU2095868C1 |
СПОСОБ ПОЛУЧЕНИЯ РАДИОСТРОНЦИЯ | 1996 |
|
RU2102808C1 |
Устройство для обнаружения квазипериодической последовательности импульсов в шумах | 1973 |
|
SU443473A1 |
Устройство для умножения в системе остаточных классов | 1980 |
|
SU962942A1 |
Авторы
Даты
2003-08-10—Публикация
2001-11-12—Подача