ИСТОЧНИК БЕЛОГО СВЕТА Российский патент 2003 года по МПК H05B33/12 H05B33/14 H05B33/22 

Описание патента на изобретение RU2214073C2

ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение к области светотехники, элементной базы микроэлектроники и электронного материаловедения.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Известен источник белого света в виде люминесцентной лампы, в которой ультрафиолетовое излучение, возбуждаемое газовым разрядом низкого давления в парах ртути, преобразуется с помощью люминофора в видимое, в том числе белое излучение [1].

Однако люминесцентные лампы обладают рядом недостатков:
(а) пары ртути экологически неприемлемы: в случае разрушения ламповой колбы и на стадии их производства;
(б) эффективность люминесцентных ламп (около 12 люмен/Ватт), хотя и превышают эффективность ламп накаливания (около 5 люмен/Ватт), все же недостаточна.

Известно об использовании твердотельных полупроводниковых светодиодов на основе нитрида галлия и родственных соединений в качестве источников света [2] . В таких приборах излучаемый светодиодом коротковолновый (синий) свет частично преобразуется люминофором в более длинноволновый (например, желтый) свет и, будучи смешан с исходным, дает белое излучение.

Эффективность таких источников света сильно зависит от эффективности преобразования люминофора. Стандартные люминофоры образованы совокупностью мелких (микронного и субмикронного размера) кристаллических зерен, приблизительно изометрических по форме, расположенных хаотически друг на друге, как показано на фиг.1. В частности, в работе [2] используют мелкозернистый люминофор на основе Y3Аl32O12:Се. Этот люминофор распределяют в органической связке. Такой люминофор, поглощая первичное (синее-голубое) излучение светодиода, испускает (генерирует) желтый свет с длиной волны 565 нм. Наложение этих двух излучений (первичного и генерируемого в люминофоре) позволяет получить излучение белого цвета.

Однако при распространении через люминофор возбуждаемый свет, также как и исходный, рассеивается зернами и частично теряется. В результате эффективность преобразования снижается, зачастую значительно.

Еще один недостаток люминесцентного преобразователя, используемого в [2] , состоит в том, что, из-за низкой теплопроводности органической связки, люминофор преобразователя, перегреваясь, деградирует.

Этот недостатки могут быть в значительной мере устранены в предлагаемом изобретении.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Предлагается источник белого света, содержащий светодиод и люминесцентный преобразователь, причем преобразователь сформирован монокристаллическими столбиками люминофора, расположенными на прозрачной подложке. Столбики взаимнопараллельны, образуют с подложкой углы от 10o до 90o, имеют сечения разных форм, а высота столбиков превышает их диаметр. Столбики имеют между собой зазоры, которые могут быть заполнены высокопреломляющим веществом. Преобразователь расположен на выходной поверхности светодиода и связан с ним оптически через иммерсионную среду, имеющую показатель преломления ниже показателя преломления люминофора. Светодиод выполнен излучающим свет в диапазоне длин волн 440-480 нм, а преобразователь выполнен излучающим свет в диапазоне 560-590 нм при отношении мощности энергии желтого света, созданной преобразователем, к мощности сохранившейся энергии синего света после прохождения светом столбиков, превышающем 2:1.

Отношение высоты столбиков к их диаметру не менее 2.

Преобразователь может быть обращен к поверхности светодиода либо подложкой, либо столбиками.

Объем столбиков занимает не менее 90% объема преобразователя, а показатель поглощения люминофорных столбиков превышает 106 м-1.

КРАТКОЕ ОПИСАНИЕ ФИГУР
Фиг.1. Схема стандартного люминофора, состоящего из приблизительно изометрических кристаллических зерен.

Фиг.2. Схема распространения света в столбчатых кристаллах.

Фиг.3. Схема источника белого света, содержащего светодиод, люминесцентный преобразователь и иммерсионный переходный слой: 1 - светодиод; 2 - иммерсионный слой; 3 - прозрачная подложка; 4 - люминесцирующие столбики; 5 - зазоры между столбиками, заполненные легкоплавким материалом.

Фиг. 4. Два варианта расположения преобразователя: (а) столбиками к светодиоду; (б) подложкой к светодиоду.

ЛУЧШИЙ ВАРИАНТ РЕАЛИЗАЦИИ ИЗОБРЕТЕНИЯ
В предлагаемом источнике белого света, содержащем светодиод и люминесцентный преобразователь, свет при распространении сквозь люминофор канализируют, пропуская его через удлиненные зерна люминофора. Этот эффект достигается при использовании люминофоров со столбчатой структурой (люминесцирующих столбиков), предложенных в патентах [3, 4]. В таких люминофорах свет распространяется вдоль люминесцирующих столбиков, отражаясь от его стенок по принципу полного внутреннего отражения (фиг.2), и испытывает лишь слабые потери.

К тому же, в столбчатых люминофорах отсутствует органическая связка.

Схема предлагаемого в настоящем изобретении источника белого света приведена на фиг.3. Между светодиодом и преобразователем расположен иммерсионный слой, который может содержать различные прозрачные вещества, такие как кремнийорганические жидкости, полимеры, эпоксидные смолы, легкоплавкие солевые эвтектики типа KCl+NaCl+LiCl+MgCl2 и др.

Свет от светодиода поступает к торцам столбиков через иммерсионный слой и распространяется вдоль них по принципу полного внутреннего отражения.

Та часть каждого из столбиков, которая прилежит к указанным торцам, образована люминофором, который не поглощает (или поглощает слабо) синий свет, так что практически весь он (или его значительная часть) распространяется по столбику дальше.

Та часть каждого из столбиков, которая удалена от указанных торцов, образована люминофором, способным преобразовать синий свет в "дополнительный" к нему желтый свет.

Таким образом, в соответствии с данным изобретением создают комбинированные по составу люминесцирующие столбики, которые способны обеспечить любое необходимое соотношение оставшегося синего света и света, преобразованного в желтый. В частности, для обеспечения белого свечения отношение мощности энергии желтого света, созданной люминесцентным преобразователем, к мощности сохранившейся энергии синего света после прохождения им столбиков, должна быть больше 2:1.

Люминесцирующие столбики образованы из светопроводящего и теплопроводящего неорганического вещества. Они достаточно большой контактной площадью закреплены на неорганической подложке (например, на стекле), что обеспечивает высокую теплопроводность всей конструкции и дает дополнительные преимущества люминесцентному преобразователю при высокой мощности светодиода. Такое преимущество достигается также тем, что суммарный объем светогенерирующих и светоизлучающих столбиков составляет не менее 90% всего объема преобразователя. Остальная его часть (зазоры между столбиками) также могут быть заполнены веществом - легкоплавким материалом.

Высокие светотехнические параметры предлагаемого источника света обусловлены тем, что в нем предусмотрено хорошее спектральное согласование между длиной волны светодиода (450-480 нм) и максимумом спектра возбуждения люминесцентного преобразователя (440-475 нм). Кроме того, показатель поглощения используемого люминофора (106-5.106 м-1) позволяет даже при небольшой высоте люминесцирующего столбика (порядка нескольких микрометров) достичь достаточно высокого (более 50-60%) поглощения первичного синего излучения нитрид-галлиевого светодиода. При квантовом выходе фотолюминесценции около 1 в результате такого поглощения образуется примерно 70% (по количеству квантов) желтого излучения и, в сочетании с сохранившимися примерно 30% синего излучения, удается получить яркий белый свет, т.е. отношение мощности энергии желтого света, созданной преобразователем, к мощности сохранившейся энергии синего света после прохождения светом столбиков превышает 2:1.

В качестве подходящего материала для люминесцентного преобразователя предлагается использовать, например, твердый раствор ZnS:CdS=90%:10%, активированный медью с концентрацией меди от 1.10-3 до 1.10-2 г/г (грамм Cu/грамм ZnS: CdS). Для изготовления столбчатого люминофора предлагается использовать метод его осаждения из паровой фазы, описанный в патентах [3, 4] . После осаждения столбиков полученная столбчатая структура со стороны свободных концов столбиков заливается легкоплавким материалом, например, на основе Bi2О32О3, шлифуется и полируется.

Как следует из фиг.4, люминесцентный преобразователь может накладываться на излучающую поверхность либо люминесцирующими столбиками к светодиоду (фиг.4а), либо подложкой к светодиоду (фиг.4б).

Области применений предлагаемого источника света многочисленны:
- источники света бытового и промышленного назначений;
- светящиеся шкалы;
- точечные статические и динамические индикаторы бегущей строки;
- многоэлементные ситуационные экраны;
- другие.

ЛИТЕРАТУРА
1. Энциклопедический словарь "Электроника". М.: Советская Энциклопедия, 1991, с. 258.

2. R. Dixon. Who's Who in Blue and Green LEDs, Compound Semiconductor 5 (1999) #5, pp. 15-19.

3. Е. И. Гиваргизов, Л.А. Задорожная, А.Н. Степанова, Н.П. Сощин, Н.Н. Чубун и М. Е. Гиваргизов, Способ изготовления люминесцирующих экранов со столбчатой структурой. Патент РФ 2127465 C1, 6 H 01 J 29/18 (1999).

4. E.I. Givargizov, L.A. Zadorozhnaya, A.N. Stepanova, N.P. Soshchin, N. N. Chubun and M. E. Givargizov. Cathodoluminescent screen with a columnar structure, and the method for its preparation, WO 99/22394 (1999).

Похожие патенты RU2214073C2

название год авторы номер документа
КАТОДОЛЮМИНЕСЦЕНТНЫЙ ЭКРАН 1997
  • Гиваргизов Е.И.
  • Сощин Н.П.
  • Степанова А.Н.
  • Чубун Н.Н.
  • Гиваргизов М.Е.
RU2144236C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЛЮМИНЕСЦИРУЮЩИХ ЭКРАНОВ СО СТОЛБЧАТОЙ СТРУКТУРОЙ 1997
  • Гиваргизов Е.И.
  • Задорожная Л.А.
  • Степанова А.Н.
  • Сощин Н.П.
  • Чубун Н.Н.
  • Гиваргизов М.Е.
RU2127465C1
СТОЛБЧАТАЯ СТРУКТУРА И УСТРОЙСТВА НА ЕЕ ОСНОВЕ 2004
  • Гиваргизов Михаил Евгеньевич
RU2418340C2
Мультиспектральный управляемый светодиодный источник излучения 2020
  • Ягудин Ильдар Тагирович
  • Жуков Николай Дмитриевич
RU2766307C1
СПЕКТРАЛЬНО-СЕЛЕКТИВНЫЙ ИСТОЧНИК ИЗЛУЧЕНИЯ 2019
  • Жуков Николай Дмитриевич
  • Ягудин Ильдар Тагирович
  • Цветков Антон Владимирович
RU2738948C1
СВЕТОДИОДНЫЙ ИСТОЧНИК БЕЛОГО СВЕТА С БИОЛОГИЧЕСКИ АДЕКВАТНЫМ СПЕКТРОМ ИЗЛУЧЕНИЯ 2019
  • Уласюк Владимир Николаевич
RU2693632C1
СПОСОБ УПРАВЛЕНИЯ ЦВЕТНОСТЬЮ СВЕТОВОГО ПОТОКА БЕЛОГО СВЕТОДИОДА И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2010
  • Соколов Юрий Борисович
  • Холодилов Валерий Иванович
  • Орловский Валерий Николаевич
RU2525166C2
СВЕТОИЗЛУЧАЮЩЕЕ ТЕЛО И СВЕТОДИОДНОЕ ОСВЕТИТЕЛЬНОЕ УСТРОЙСТВО, СОДЕРЖАЩЕЕ ТАКОЕ ТЕЛО 2014
  • Соколов Юрий Борисович
RU2565419C1
ИСТОЧНИК ИЗЛУЧЕНИЯ С УПРАВЛЯЕМЫМ СПЕКТРОМ 2017
  • Жуков Николай Дмитриевич
  • Хазанов Александр Анатольевич
  • Шишкин Михаил Игоревич
RU2661441C1
ЛЮМИНЕСЦЕНТНЫЙ КОМПОЗИТНЫЙ МАТЕРИАЛ И СВЕТОИЗЛУЧАЮЩЕЕ УСТРОЙСТВО НА ЕГО ОСНОВЕ 2011
  • Вакштейн Максим Сергеевич
  • Дежуров Сергей Валерьевич
  • Назаркин Арсений Владимирович
  • Трухан Владимир Михайлович
RU2500715C2

Иллюстрации к изобретению RU 2 214 073 C2

Реферат патента 2003 года ИСТОЧНИК БЕЛОГО СВЕТА

Изобретение относится к области светотехники, элементной базы микроэлектроники, электронного материаловедения. Технический результат - повышение эффективности преобразования люминофора, устранение деградации люминофора, улучшение экологичности. Достигается тем, что в источнике белого света на основе синего нитрид-галлиевого светодиода синий свет частично превращается в желтый свет посредством люминесцентного преобразователя, сформированного монокристаллическими столбиками на прозрачной подложке, а затем синее и желтое излучения смешиваются, генерируя белый свет. 5 з.п.ф-лы, 5 ил.

Формула изобретения RU 2 214 073 C2

1. Источник белого света, содержащий светодиод и люминесцентный преобразователь, отличающийся тем, что преобразователь сформирован монокристаллическими столбиками люминофора, расположенными на прозрачной подложке, столбики взаимно параллельны, образуют с подложкой углы 10o - 90o, имеют сечения разных форм, высота столбиков превышает их диаметр, столбики имеют между собой зазоры, которые могут быть заполнены высокопреломляющим веществом, преобразователь расположен на выходной поверхности светодиода и связан с ним оптически через иммерсионную среду, имеющую показатель преломления ниже показателя преломления люминофора, причем светодиод выполнен излучающим свет в диапазоне длин волн 440-480 нм, а преобразователь выполнен излучающим свет в диапазоне 560 - 590 нм при отношении мощности энергии желтого света, созданной преобразователем, к мощности сохранившейся энергии синего света после прохождения светом столбиков, превышающем 2:1. 2. Источник света по п.1, отличающийся тем, что отношение высоты столбиков к их диаметру не менее 2. 3. Источник света по п.2, отличающийся тем, что преобразователь обращен к поверхности светодиода подложкой. 4. Источник света по п.2, отличающийся тем, что преобразователь обращен к поверхности светодиода столбиками. 5. Источник света по п.1, отличающийся тем, что объем столбиков занимает не менее 90% объема преобразователя. 6. Источник света по п.1, отличающийся тем, что показатель поглощения люминофорных столбиков превышает 106 м-1.

Документы, цитированные в отчете о поиске Патент 2003 года RU2214073C2

DE 3320882 А1, 22.12.1983
ИНЖЕКЦИОННЫЙ НЕКОГЕРЕНТНЫЙ ИЗЛУЧАТЕЛЬ 1998
  • Швейкин В.И.
RU2142661C1
RU 96120353 А, 20.12.1998
ЭЛЕКТРОННОЕ УСТРОЙСТВО 1992
  • Джеймс Е.Джаски[Us]
  • Роберт С.Кэйн[Us]
  • Сьядонг Т.Жу[Cn]
RU2102812C1
СПОСОБ ПОЛУЧЕНИЯ ГИБКОГО ЭЛЕКТРОЛЮМИНЕСЦЕНТНОГО ИСТОЧНИКА СВЕТА 1992
  • Куприянов В.Д.
  • Степанова Н.А.
RU2073963C1
Прибор, замыкающий сигнальную цепь при повышении температуры 1918
  • Давыдов Р.И.
SU99A1

RU 2 214 073 C2

Авторы

Гиваргизов Е.И.

Абрамов В.С.

Сощин Н.П.

Гиваргизов М.Е.

Даты

2003-10-10Публикация

1999-12-30Подача