Изобретение относится к области цветной металлургии, в частности к технологии очистки газов, отходящих от электролизеров при производстве алюминия, с помощью адсорбентов.
Известен способ "сухой" очистки фторсодержащих газов (А.с. СССР 463631, С 01 В 7/22, опубл. 15.03.75 г.) путем пропускания их через ионообменные смолы с последующей десорбцией продукта.
Поскольку продуктом десорбции, как правило, является фтористо-водородная кислота, то возникают проблемы с созданием передела ее гидрохимической переработки.
Известен способ очистки фторсодержащих газов (А.с. СССР 581977, В 01 D 53/02, опубл. 30.11.77 г.) путем пропускания их через слой керамзита или цементного клинкера. Использованный адсорбент непригоден для дальнейшей утилизации, т.к. является экологически небезопасным отходом.
Наиболее близким по технической сущности и достигаемому результату является способ очистки фторсодержащих газов путем контакта их с твердым адсорбентом, в качестве которого используют глинозем (В.Г. Терентьев, А.В. Сысоев, И. С. Гринберг и др. Производство алюминия. - М.: "Металлургия", 1997 г., с.270).
Согласно известному способу продуктом "сухой" очистки газов является фторированный глинозем, который направляют в электролизные корпуса.
Перед загрузкой в электролизер фторированный глинозем помещают на корку электролизной ванны, где он разогревается до ~300oС для окончательной просушки. В этот период происходит частичная десорбция фтористого водорода из глинозема, за счет чего повышаются расход фтористых солей и ухудшение санитарно-экологического состояния окружающей среды.
Задачей предлагаемого изобретения является повышение технико-экономических показателей очистки газов.
Техническим результатом предлагаемого изобретения является снижение десорбционных процессов в глиноземе.
Технический результат достигается тем, что в способе очистки отходящих газов электролитического производства алюминия, включающем контактирование очищаемых газов с глиноземом, контактирование очищаемых газов осуществляют с глиноземом, модифицированным карбонатом лития в массовом соотношении 1: 0,0015-0,0025.
Техническая сущность предлагаемого изобретения состоит в следующем.
Известно (А.Г. Касаткин. Основные процессы и аппараты химической технологии. - М. : "Химия", 1971 г., с.595), что адсорбенты имеют различные по диаметру капиллярные каналы - поры, которые условно можно разделить на макропоры, переходные и микропоры.
Размеры микропор приближаются к размерам адсорбируемых молекул, и адсорбция в микропорах приводит к заполнению их объема.
Микропоры в процессе адсорбции играют роль лишь транспортных каналов, а переходные поры в процессе адсорбции образуют лишь слой адсорбируемого вещества.
Таким образом, сорбционная емкость сорбента зависит главным образом от количеств микропор адсорбента.
В известном способе очистки фторсодержащих газов, предусматривающем их контакт с адсорбентом, в качестве которого используют глинозем, количество фтористого водорода, адсорбированного в единице массы, будет зависеть от количества микропор глинозема.
В предлагаемом способе при модифицировании глинозема карбонатом лития в процессе адсорбции наряду с микропорами будут принимать участие макропоры и переходные, поскольку карбонат лития будет улавливаться именно на них.
А наряду с процессом физической сорбции в микропорах будут происходить процессы хемосорбции в макропорах и переходных по следующим реакциям:
2HF(г)+Li2CO3=2LiF+H2O+CO2; (1)
2AlF3(г)+Li2CO3=6LiF+Al2O3+3CO2; (2)
6NaAlF4+3Li2CO3=2Na3Li3Al2F12+Al2O3+3CO2. (3)
В результате реакции (1)-(3) образуются фторсодержащие термодинамически более стабильные и менее склонные к десорбции литиевые соединения. Кроме того, образование литиевых соединений на поверхности сорбента будет сужать транспортные каналы, препятствуя также процессу десорбции.
Сопоставительный анализ предлагаемого решения с прототипом показывает, что заявляемый способ отличается от известного тем, что в качестве адсорбента используют глинозем, модифицированный карбонатом лития в массовом соотношении 1:0,0015-0,0025.
Таким образом, заявляемое техническое решение отличается от прототипа и соответствует условию патентоспособности "новизна".
Анализ известных технических решений, полученных из общедоступных сведений, показал, что модифицирование глинозема для адсорбции фтористого водорода гидроoксидом калия или натрия, а также карбонатом натрия известно (Пат. Великобритании 1281597, C 01 F 7/02, опубл. 12.07.72 г.; приор. США от 05.09.72 г. ; пат. США 3773633, С 22 D 3/12, опубл. 20.11.73 г.; пат. США 3823079, С 22 D 3/12, опубл. 09.07.74 г.).
Однако использование фторированного глинозема, модифицированного гидроокисью калия, в процессе электролиза алюминия невозможно, т.к. ион калия из-за своей повышенной сорбционной активности легко проникает в поры футеровки и легко ее разрушает.
Дополнительное внесение ионов натрия в процесс электролиза приводит к увеличению криолитового отношения, перерасходу фтористого алюминия, и, в конечном итоге, к понижению выхода алюминия по току.
По сравнению с известными модификаторами соли лития образуют термодинамически более стабильные соединения, что приводит к снижению расхода фтористого алюминия и выбросов фтористого водорода в окружающую среду.
Таким образом, в обнаруженной технической информации отсутствуют сведения об обеспечиваемом заявляемым изобретением техническом результате, а отличительные признаки его не совпадают с отличительными известных решений. Это означает, что заявляемое техническое решение соответствует условию патентоспособности "изобретательский уровень".
Возможность осуществления способа подтверждается следующими примерами.
Газ, поступающий на очистку, отсасывают из коллектора и пропускают через модуль "реактор-рукавный фильтр" производительностью 100 тыс. нм3/час.
В реактор, представляющий собой низконапорную трубу Вентури, направляют очищаемый газ, содержащий 600 мг HF/нм3 и поток свежего глинозема (Аl2О3) с карбонатом лития (Li2СО3) в массовом соотношении 1:0,0020.
Продолжительность контакта очищаемого газа с адсорбентом осуществляют в течение 3 сек, затем фторированный адсорбент направляют в рукавный фильтр, а оттуда - в электролизер. В реактор при этом загружают свежую порцию адсорбента.
Десорбция фтористого водорода на корке электролита составила 1,1 кг HF/т Al, эффективность очистки по фтористому водороду 99,17%.
В таблице представлены результаты экспериментов по прототипу и предлагаемому способу.
Как следует из таблицы, по сравнению с прототипом, предлагаемый способ позволяет снизить процесс десорбции с 10,6 до 1,1 кг HF/т Al, повысить эффективность очистки с 95,0 до 99,17% и снизить расход фтористого алюминия 21,6 до 16,3 кг/т Al.
Изменение соотношения Аl2О3/Li2СО3 выше заявляемого предела приводит к снижению показателей эффективности очистки и десорбции HF.
При изменении соотношении Аl2О3/Li2СО3 ниже заявляемого предела улучшение показателей эффективности очистки и десорбции HF не наблюдается.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ДЕЦЕНТРАЛИЗОВАННОЙ СУХОЙ ОЧИСТКИ ГАЗОВ ОТ ЭЛЕКТРОЛИЗЕРОВ ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЯ | 2006 |
|
RU2315824C2 |
СПОСОБ ОЧИСТКИ ГАЗОВ | 2003 |
|
RU2240172C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛИТИЙСОДЕРЖАЩИХ ФТОРИСТЫХ СОЛЕЙ ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО ПРОИЗВОДСТВА АЛЮМИНИЯ (ВАРИАНТЫ) | 2004 |
|
RU2277068C2 |
СПОСОБ ВЫДЕЛЕНИЯ ВЕЩЕСТВ ИЗ ГАЗОВОЙ СРЕДЫ ПОСРЕДСТВОМ СУХОЙ АДСОРБЦИИ | 1995 |
|
RU2153923C2 |
ГАЗООЧИСТНОЙ БЛОК ОЧИСТКИ ЭЛЕКТРОЛИЗНЫХ ГАЗОВ С ГАЗООЧИСТНЫМ МОДУЛЕМ, СОДЕРЖАЩИМ ФИЛЬТР РУКАВНЫЙ И РЕАКТОР | 2017 |
|
RU2668926C2 |
ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ЭЛЕКТРОЛИТИЧЕСКОГО ПРОИЗВОДСТВА АЛЮМИНИЯ В ЭЛЕКТРОЛИЗЕРАХ, ОСНАЩЕННЫХ СИСТЕМОЙ АВТОМАТИЧЕСКОЙ ПОДАЧИ СЫРЬЕВЫХ СЫПУЧИХ МАТЕРИАЛОВ | 2012 |
|
RU2494175C2 |
СПОСОБ ПЕРЕРАБОТКИ ФТОРУГЛЕРОДСОДЕРЖАЩИХ ОТХОДОВ АЛЮМИНИЕВОГО ПРОИЗВОДСТВА | 2015 |
|
RU2586389C1 |
УСТРОЙСТВО И СПОСОБ ОЧИСТКИ ОТХОДЯЩЕГО ГАЗА ИЗ ЭЛЕКТРОЛИЗЕРА ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЯ | 2012 |
|
RU2552559C2 |
СПОСОБ И УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ УЛАВЛИВАНИЯ SO В ГАЗАХ ЭЛЕКТРОЛИЗНЫХ ВАНН | 2012 |
|
RU2590566C2 |
СПОСОБ ПОЛУЧЕНИЯ ОЧИЩЕННОЙ ФОСФОРНОЙ КИСЛОТЫ | 2002 |
|
RU2200702C1 |
Изобретение относится к области адсорбционной очистки газов, отходящих от электролизеров при производстве алюминия. Способ включает контактирование очищаемых газов с адсорбентом, причем в качестве адсорбента используют глинозем, модифицированный карбонатом лития в массовом соотношении 1:0,0015-0,0025. Способ позволяет снизить десорбционные процессы и повысить технико-экономические показатели очистки газов. 1 табл.
Способ очистки отходящих газов электролитического производства алюминия, включающий контактирование очищаемых газов с глиноземом, отличающийся тем, что контактирование очищаемых газов осуществляют с глиноземом, модифицированным карбонатом лития в массовом соотношении 1:0,0015-0,0025.
В.Г | |||
ТЕРЕНТЬЕВ и др | |||
Производство алюминия | |||
- Новокузнецк: СибВАМИ, 2000, с.269 | |||
Способ выделения фтора из газов производства алюминия | 1973 |
|
SU728691A1 |
RU 1464337 С1, 27.12.1996 | |||
Тренажер радиотелеграфиста | 1984 |
|
SU1239742A1 |
US 3823079 А1, 09.07.1974 | |||
US 4006066 А1, 01.02.1977 | |||
WO 9615846 А1, 30.05.1996. |
Авторы
Даты
2004-01-20—Публикация
2002-12-15—Подача