Изобретение относится к физике полупроводников, в частности к полупроводниковым эпитаксиальным наноструктурам с квантовыми ямами, и может быть использовано при реализации полупроводниковых приборов, работа которых основана на эффекте сверхпроводимости.
Приборы, принцип действия которых основан на эффекте сверхпроводимости, находят все более широкое применение в различных прикладных областях науки и техники. Расширение функциональных возможностей и, как следствие, областей применения сверхпроводящих приборов определяется, главным образом, критической температурой Тс, при которой наблюдается переход из нормального (резистивного) состояния в сверхпроводящее состояние.
Важным этапом в данном направлении явилось появление высокотемпературных сверхпроводников с критической температурой перехода, превышающей температуру кипения азота. Приборы, работающие на эффекте высокотемпературной сверхпроводимости, более дешевы, так как отпадает необходимость для сохранения сверхпроводящего состояния поддерживать сверхнизкую - гелиевую температуру, как при работе с обычными сверхпроводниками.
В рамках теории Бардина - Купера - Шриффера (БКШ) возникновение сверхпроводимости в тех твердых телах, обычная проводимость которых велика, объясняется механизмом электрон-фононного взаимодействия. Электрон при движении по кристаллу деформирует в своей окрестности решетку, что приводит к рождению фонона, который затем поглощается вторым электроном. В результате для пары электронов фононный обмен будет создавать связанное состояние, приводя к образованию т.н. куперовских пар. При таком типе взаимодействия основному состоянию соответствует меньшая энергия, чем система невзаимодействующих электронов, целиком заполняющих область Ферми. Между энергией куперовской пары и энергией двух отдельных неспаренных электронов имеется значительная энергетическая щель.
Электрон-фононное взаимодействие в сверхпроводящем состоянии может уменьшить и даже свести к нулю кулоновское отталкивание между двумя электронами по сравнению с его величиной в нормальном состоянии. Энергетическая щель стабилизирует куперовские пары, препятствует их рассеянию на фононах или дефектах решетки и объясняет бесконечно большую проводимость сверхпроводника на постоянном токе.
Достижения технологии эпитаксии из молекулярных пучков открывают широкие перспективы создания полупроводниковых наноструктур со сверхпроводимостью.
Известны полупроводниковые наноструктуры с квантовыми ямами, в которых предложен механизм реализации резонансного взаимодействия электронов квантовой ямы с продольными оптическими фононами (1-3).
В частности, в (1) предложена полупроводниковая наноструктура, представляющая собой квантовую яму, выполненную в виде узкозонного полупроводника - GaAs, ограниченного барьерными слоями из широкозонного полупроводника - AlGaAs. В центре квантовой ямы сформировано несколько моноатомных слоев из InAs.
Энергия продольных оптических фононов в InAs - 30,5 мэВ - равна разности E1-E2 энергий электронов основного и возбужденного состояний в квантовой яме GaAs. Предложенный механизм образования куперовских пар заключается в следующем. Зарядовое распределение фононных генераторов имеет максимум в центре квантовой ямы. Волновая функция электрона в основном состоянии E1 также имеет максимум в центре квантовой ямы. Поглощая фонон, электрон с уровня E1 переходит на более высоко расположенный уровень E2. Состояние с энергией E2 характеризуется тем, что волновая функция электрона в этом состоянии имеет асимметричный характер и равна нулю в центре квантовой ямы. Электроны на энергетическом уровне E2 испускают поглощенный фонон. В результате обмена фононом образуется куперовская пара. Эффект усиления куперовского спаривания электронов достигается за счет того, что частота продольных (LO) фононов монослоя InAs (генератора фононов) равна разности энергий электронов основного и возбужденного состояний в квантовой яме.
Таким образом, в известной наноструктуре существует теоретическая вероятность повышения температуры Тc перехода в сверхпроводящее состояние.
Однако практическая реализация предложенного механизма образования куперовских пар является весьма проблематичной. Во-первых, создание бездефектного монослоя InAs в матрице GaAs является очень сложной технологической задачей. В реальных условиях эпитаксиального роста слой InAs в GaAs будет иметь ячеистую структуру поверхности с размытием минимум в два монослоя (4). Кроме того, индий будет как диффундировать в GaAs с образованием переходной области в виде соединения (GaAs)у(InAs)1-y с асимметрией распределения по обе стороны от монослоя InAs, так и захватываться фронтом заращиваемого GaAs, формирующего квантовую яму. Все эти факторы приведут к тому, что спектр LO фоновов псевдомонослоя InAs будет достаточно размыт.
Во-вторых, в моноатомном слое InAs, расположенном между слоями GaAs, из-за рассогласования кристаллических решеток будет возникать напряжения, что, в свою очередь, приведет к трансформации спектра LO оптических фононов, и ослаблению электрон-фононного взаимодействия.
В-третьих, кроме резонансного спаривания электронов с LO фононами в InAs, существенным побочным обстоятельством (артефактом) будет являться сильное взаимодействие электронов двумерного газа на уровнях E1 и E2 размерного квантования с LO и ТО (поперечными) фононами сложной кристаллической структуры AlxGa1-xAs/GaAs.
В-четвертых, так как экстремумы волновой функции электрона на уровнях E1 и Е2 пространственно разнесены и переходы между ними носят непрямой характер, вероятность спаривания электронов по упомянутому выше резонансному механизму существенно снижается.
Таким образом, реально в процессе взаимодействия с электронами квантовой ямы будет участвовать очень небольшое число фононов псевдомонослоя InAs, что значительно снижает в известной полупроводниковой наноструктуре эффективность электрон-фононного взаимодействия и не позволяет серьезно говорить о влиянии резонансного механизма на повышение температуры перехода в сверхпроводящее состояние.
Ближайшим технически решением к заявляемому является сверхпроводящая полупроводниковая наноструктура с квантовыми ямами, состоящая из последовательности слоев узкозонного полупроводника GaAs толщиной 50 , разделенных слоями широкозонного полупроводника AlGaAs такой же толщины. Слои GaAs имеют поочередно дырочный тип проводимости (концентрация р=3·1010 см-2) и электронный тип проводимости (концентрация n=1·1010 см-2). Слои GaAs - квантовые ямы, а слои AlGaAs выполняют роль энергетических барьеров высотой 1 эВ (5). В квантовых ямах при заданных параметрах гетероструктуры формируется двумерный электронный газ.
Недостатком известной сверхпроводящей полупроводниковой наноструктуры с квантовым ямами является низкая температура перехода в сверхпроводящее состояние.
Задача, решаемая заявляемым изобретением, - повышение температуры перехода сверхпроводящей полупроводниковой наноструктуры с квантовыми ямами в сверхпроводящее состояние.
Указанная задача решается тем, что в сверхпроводящей полупроводниковой наноструктуре с квантовыми ямами, содержащей квантовую яму с двумерным электронным газом, выполненную в виде слоя узкозонного полупроводника, заключенного между барьерными слоями из широкозонного полупроводника, квантовая яма сформирована на последовательно расположенных короткопериодической сверхрешетке с минизоной, энергия которой ε1 удовлетворяет условию ε1>E1, где E1 - энергия основного уровня размерного квантования квантовой ямы, и барьерном слое из широкозонного материала, в котором выполнен δ-слой носителей заряда с энергией δE1>ε1, а толщина t барьерного слоя, отделяющего квантовую яму от короткопериодической сверхрешетки, выбирается из соотношения:
где - q
Квантовая яма может быть образована слоем i-GaAs с толщиной 60-80 , заключенным между барьерными слоями i-AlAs толщиной не менее 40 ; короткопериодическая сверхрешетка формируется из чередующихся слоев GaAs/i-AlAs с толщиной не менее 15 и числом периодов не менее 40; барьерный слой выполняется из i-AlAs, a δ-слой с концентрацией носителей заряда 2·1018 см3 располагается на расстоянии 40 от сверхрешетки.
Сущность изобретения заключается в создании сверхпроводящей полупроводниковой наноструктуры с квантовыми ямами, в которой для реализации сверхпроводящего состояния с более высокой критической температурой используется механизм спаривания электронов, принципиально отличный от электрон-фононного взаимодействия, описываемого теорией БКШ, и основанный на управлении электронным спектром в короткопериодической сверхрешетке и последующем воздействии в результате изменения этого спектра на состояние электронов в проводящем канале квантовой ямы, приводящем к образованию псевдокуперовских пар.
Изобретение иллюстрируется графическими материалами. На фиг.1 схематически изображен один из примеров реализации заявляемой полупроводниковой наноструктруры, на фиг.2 приведена ее зонная энергетическая диаграмма, на фиг.3 иллюстрируется механизм псевдокуперовского спаривания электронов.
Сверхпроводящая полупроводниковая наноструктура с квантовыми ямами сформирована на подложке 1 из полуизолирующего GaAs (Сr), от которой отделена буферным слоем 2 из i-GaAs толщиной 0,3 мкм, и состоит из барьерного слоя 3 из i-AlAs толщиной 240 , в котором на расстоянии 200 от буферного слоя выполнен δ-Si или δ-Sn слой 4 с концентрацией N=2·1018 см3, короткопериодической сверхрешетки 5, включающей, по крайней мере, 40 периодов чередующихся слоев 6 из i-GaAs с уровнем легирования N~1017 см3 и слоев 7 из i-AlAs толщиной 15 каждый; квантовой ямы 8, выполненной в виде слоя i-GaAs толщиной 60-80 , заключенного между барьерными слоями 9 и 10 из i-AlAs, причем толщина слоя 9 составляет 40 , а толщина слоя 10-100 . Энергетический уровень δE1 δ-слоя 4 расположен выше энергетического уровня ε1 электронов в минизоне короткопериодической сверхрешетки 5, т.е. выполняется условие δE1>ε1. Наноструктура закрыта слоем 11 из i-GaAs толщиной 100 .
Толщина слоя i-GaAs квантовой ямы 40-60 выбирается для исключения рассеяния электронов на шероховатостях границы раздела; толщина барьерного слоя 9-40 выбирается из условия где q
Заявляемая сверхпроводящая полупроводниковая структура может быть получена методом синтеза по технологии эпитаксии из молекулярных пучков.
Следует отметить, что приведенный пример не ограничивает возможных вариантов конкретной реализации сверхпроводящей полупроводниковой наноструктуры с квантовыми ямами и приведен для иллюстрации. Критическая температура Тc~100К может быть достигнута при использовании других материалов и видоизменении ряда параметров структуры.
Заявляемая сверхпроводящая полупроводниковая наноструктура работает следующим образом.
Короткопериодическая сверхрешетка 5 представляет собой периодическую последовательность квантовых ям, разделенных туннельно-прозрачными барьерами, в которой в результате туннелирования электронов, находящихся в потенциальных ямах, через барьеры основной уровень размывается в минизону, имеющую достаточно малую ширину Δε1. Электроны, локализованные в минизоне, имеют возможность свободно перемещаться в осевом продольном направлении. Квантовая яма 8 не легируется, но так как δE1>ε1, электроны с уровня δE1 переходят по минизоне в квантовую яму 8.
Механизм образования сверхпроводимости в заявляемой полупроводниковой наноструктуре поясняется на фиг.3. Движущийся по проводящему каналу квантовой ямы 8 электрон поляризует короткопериодическую сверхрешетку 5, индуцируя в ней положительный заряд q+, локализованный в некоторой области. Этот положительный заряд связан с ионами легирующей примеси и наведен смещением электронов q- минизоны как в плоскости Х-Y, так и по оси Z короткопериодической сверхрешетки 5. Из-за большой скорости движения электрона в проводящем канале квантовой ямы 8 индуцированный положительный заряд q+ в короткопериодической сверхрешетке 5 несколько пространственно “отстает” от движущегося электрона. Второй электрон следующий за первым, притягивается к области положительного заряда q+ и поэтому косвенно притягивается первым электроном. Таким образом, индуцированный положительный заряд обеспечивает спаривание электронов в проводящем канале квантовой ямы 8. Механизм взаимодействия пояснен на фиг.3 символом .
Оценим энергию взаимодействия U пары как кулоновскую энергию, положив
где е = 1,6·10-19 К - заряд электрона;
ε = 12,5 - диэлектрическая постоянная используемых полупроводниковых материалов (GaAs, AlAs);
ε0 = 8,85·10-12 Ф/м - универсальная диэлектрическая постоянная;
r =100 - расстояние между зарядами
В результате получаем U~12 мэВ, что соответствует Тc~140 К. Учитывая определенный интервал величин r и величин смещения электронов в минизоне короткопериодической сверхрешетки, можно ожидать, что Тc>100 К.
Оценим ширину энергетической щели Δ0, отделяющей основное состояние от возбужденного. Отметим, что для рассматриваемой структуры справедливо условие слабой связи. Полученная выше температура Тc удовлетворяет условию слабой связи.
где - дебаевская энергия. Для Т~100 К величина Т0=320 К (для GaAs) и ЕF при Пs=10-12 см-2 соответствует эквивалентная температура 440К. Следовательно, условие (2) выполняется.
Условие (2) равносильно
В таком случае и (3) согласуется с (2).
Для оценки Δ0 используем соотношение
где pF - фермиевский импульс (рF=2,5·10-23 кгм/с для Пs~1012 см-2), a - длина рассеяния. Для GaAs a~1,5·10-8 м. Величина Δ0 при этом равна примерно 200 К, что близко к kTc.
Длина когерентности определяется выражением
где m* - эффективная масса электронов. Для GaAs m*=0,067m0, где m0 - маcса свободного электрона, и в результате получаем, что для GaAsξ0=105 A. В случае слабой связи выполняется соотношение:
где a0=5,65 А - постоянная кристаллической решетки GaAs.
Смещение электронов двумерного газа в минизоне короткопериодической сверхрешетки равно длине экранирования Дебая
Так как для GaAs ε=12,5, m*=0,067 m0, получаем lD=50 A. На это расстояние смещаются электроны в минизоне по оси наноструктуры.
Состояние (q--q+) со временем, определяемым диффузионными процессами, затухает. Из выражения для коэффициента диффузии
при D=2,0·10-2 м2/с и EF=3,4 мэВ (nS=1011 см-2) следует, что τD=2,5·10-12 c.
Расстояние 50 электроны в минизоне со скоростью диффузии (GaAs) проходят за время ~10-12 с, что практически совпадает с τD. Время жизни электрона в квантовой яме для создании избыточного положительного заряда равно ~2·10-12 с.
Таким образом, качественные оценки параметров заявляемой полупроводниковой наноструктуры свидетельствуют о возможности реализации в ней сверхпроводящей фазы с Тс~100 К.
Отличительной особенностью заявляемой полупроводниковой структуры является реализация нового механизма образования псевдокуперовских пар, энергия связи которых обусловлена энергией кулоновского взаимодействия электронов в проводящем канале квантовой ямы с положительным индуцированным зарядом в короткопериодической сверхрешетке.
Применение заявляемой сверхпроводящей полупроводниковой структуры с квантовыми ямами позволит по сравнению с прототипом значительно повысить температуру перехода в сверхпроводящее состояние, что, в свою очередь, облегчит техническую реализацию полупроводниковых приборов, использующих эффект сверхпроводимости, расширит области их применении, повысит технические характеристики. Так, например, использование заявляемой полупроводниковой наноструктуры в качестве детектора излучения расширит полосу его рабочих частот, повысит чувствительность и обнаружительную способность.
Кроме того, возможно мультиплицирование заявляемой структуры, т.е. формирование “многослойной” сверхпроводящей полупроводниковой наноструктуры, “слоями” которой являются последовательно сформированные на подложке повторяющиеся блоки, включающие квантовую яму, короткопериодическую сверхрешетку и барьерный слой - поставщик носителей заряда. Реализация такой “многослойной” архитектуры позволит значительно увеличить мощность полупроводниковых приборов, работающих на эффекте сверхпроводимости.
ЛИТЕРАТУРА
1. Патент США №5012302, кл. 357/4, 1991 г.
2. Патент США №5061970, кл. 357/4, 1991 г.
3. Патент США №5142341, кл. 357/4, 1992 г.
4. M.A.Herman, D.Bimberg, J.J.Christen Appl. Phys., vol. 70, R1, 1991.
5. P.M.Platzman, T.Lenosky. Possibilities for superconductivity in twodimensional GaAs bilayers. Physical Rewiev B, vol. 52, N.14 (прототип).
название | год | авторы | номер документа |
---|---|---|---|
ПОЛУПРОВОДНИКОВАЯ НАНОСТРУКТУРА С КОМПОЗИТНОЙ КВАНТОВОЙ ЯМОЙ | 2004 |
|
RU2278072C2 |
Гетероструктура с составной активной областью с квантовыми точками | 2018 |
|
RU2681661C1 |
БИСТАБИЛЬНЫЙ АБСОРБЦИОННЫЙ ОПТОЭЛЕКТРОННЫЙ ПРИБОР | 1991 |
|
RU2007786C1 |
ТЕРМОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ НА ОСНОВЕ НЕРЕГУЛЯРНОЙ ТВЕРДОТЕЛЬНОЙ СВЕРХРЕШЕТКИ | 2021 |
|
RU2788972C2 |
Гетероэпитаксиальная структура для полевых транзисторов | 2017 |
|
RU2649098C1 |
ФОТОДЕТЕКТОР НА ОСНОВЕ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ С КВАНТОВЫМИ ЯМАМИ | 1992 |
|
RU2022411C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КВАНТОВЫХ СТРУКТУР: КВАНТОВЫХ ТОЧЕК, ПРОВОЛОК, ЭЛЕМЕНТОВ КВАНТОВЫХ ПРИБОРОВ | 2004 |
|
RU2278815C1 |
МУЛЬТИБАРЬЕРНАЯ ГЕТЕРОСТРУКТУРА ДЛЯ ГЕНЕРАЦИИ МОЩНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ СУБ- И ТЕРАГЕРЦОВОГО ДИАПАЗОНОВ | 2012 |
|
RU2499339C1 |
ТУННЕЛЬНО-ПРОЛЕТНЫЙ ПОЛУПРОВОДНИКОВЫЙ ДИОД | 1988 |
|
SU1559993A1 |
ПОЛУПРОВОДНИКОВАЯ СТРУКТУРА ДЛЯ ФОТОПРЕОБРАЗУЮЩЕГО И СВЕТОИЗЛУЧАЮЩЕГО УСТРОЙСТВ | 2014 |
|
RU2558264C1 |
Изобретение относится к физике полупроводников, в частности к полупроводниковым эпитаксиальным наноструктурам с квантовыми ямами, и может быть использовано при реализации полупроводниковых приборов, работа которых основана на эффекте сверхпроводимости. Использование изобретения позволяет повысить температуру перехода полупроводниковой наноструктуры с квантовыми ямами в сверхпроводящее состояние. Предложена сверхпроводящая полупроводниковая наноструктура с квантовыми ямами, содержащая квантовую яму с двумерным электронным газом, выполненную в виде слоя узкозонного полупроводника, заключенного между барьерными слоями из широкозонного полупроводника. Квантовая яма сформирована на последовательно расположенных короткопериодической сверхрешетке с минизоной, энергия которой ε1 удовлетворяет условию ε1>E1, где E1 - энергия основного уровня размерного квантования квантовой ямы, и барьерном слое из широкозонного материала, в котором выполнен δ-слой носителей заряда с энергией δЕ1>ε1. При этом толщина t барьерного слоя, отделяющего квантовую яму от короткопериодической сверхрешетки, выбирается из соотношения: , где - q
где - q-1T-F - длина экранирования Томаса-Ферми.
US 5016064, 14.05.1991.US 5012302, 30.04.1991.US 5061970, 29.10.1991.US 5142341, 25.08.1991.US 5508829, 16.04.1996.JP 2246286, 02.10.1990.US 4933728, 12.06.1990.SU 1575858, 20.09.1995. |
Авторы
Даты
2004-04-20—Публикация
2002-07-24—Подача