СПОСОБ ПОЛУЧЕНИЯ ОПТИМАЛЬНОГО КОЛИЧЕСТВА ЭЛЕКТРОЛИТА В АККУМУЛЯТОРНОЙ БАТАРЕЕ Российский патент 2004 года по МПК H01M10/34 H01M12/08 

Описание патента на изобретение RU2227349C1

Изобретение относится к области электроэнергетики и может быть использовано в химических металл-газовых источниках тока, например, никель-водородных аккумуляторных батареях.

Использование в никель-водородной аккумуляторной батарее газодиффузионного водородного электрода вызывает необходимость оптимального дозирования электролита. Особенно это важно в высоковольтных батареях с общим газовым коллектором, поскольку значительное различие в количестве электролита в электрически последовательно соединенных аккумуляторных элементах вызывает не идентичность их характеристик, что приводит к снижению энергоемкости батареи. С другой стороны, абсолютно одинаковое количество электролита в аккумуляторных элементах не является оптимальным вследствие различия структурных характеристик электродов и электролитсодержащих сепараторов в пределах технологических допусков, а также различия плотности сборки аккумуляторных элементов в батарее.

Известен способ изготовления герметичного никель-водородного аккумулятора /Патент №504263, Н 01 М 10/30, заявл. 06.08.1974/, в котором критерием оптимального количества электролита в аккумуляторном элементе до герметизации аккумулятора является максимальный ток электровосстановления кислорода воздуха на отрицательном электроде при наложении напряжения от внешнего источника тока 0,8-1,36 В. Такой способ определения и дозирования оптимального количества электролита может быть применен только для аккумулятора с одним аккумуляторным элементом. В высоковольтной батарее с несколькими электрически последовательно соединенными аккумуляторными элементами, если и можно приложить к каждому элементу напряжение от внешнего источника, то вызывает большие трудности изменение количества электролита в одном элементе, не изменяя в других, поскольку аккумуляторные элементы механически соединены в один электрохимический пакет.

Наиболее близким к заявляемому техническому решению является патент /Патент №2146068, Н 01 М 10/10, 12/08, заявл. 02.03.1998/, в котором вакуумированием и последующей пропиткой электролитом обеспечивается практически полное заполнение всех пор. Уменьшение объема электролита до заданной величины проводится на основании экспериментально определяемой зависимости электрических характеристик от электролитосодержания путем осушения с контролем объема удаленной сконденсированной воды. Способ получения оптимального количества электролита методом осушения имеет ряд недостатков. Во-первых, после удаления каждой порции воды необходимо определять электрические характеристики батареи, что требует ее перемонтажа из камеры заправки в технологическую емкость и обратно для удаления следующей порции воды и т.д., пока энергоемкость батареи не достигнет максимального значения. А операция перемонтажа достаточно трудоемка и требует много времени. Во-вторых, перемонтаж предполагает контакт батареи с воздухом, что, с одной стороны, нежелательно из-за адсорбции примесей, с другой - замена воздуха на аргон, а затем на водород для определения электрических характеристик приводит к дополнительному удалению воды, что вызывает несоответствие между измеренным объемом сконденсированной воды и действительно удаленной. В-третьих, удаление воды методом осушения не гарантирует оптимального количества электролита, поскольку граница раздела газ - электролит зависит от индивидуальных структурных характеристик каждого аккумуляторного элемента.

Таким образом, задачей заявляемого технического решения является способ получения оптимального количества электролита в никель-водородной батарее. Заявляемый способ заключается в том, что батарея после электрической коммутации аккумуляторных элементов заправляется электролитом под вакуумом, после чего она устанавливается в технологический корпус для проведения приработочных зарядно-разрядных циклов. Циклирование проводится по следующей программе:

A) 1-й цикл - батарея заряжается током (Iз) 0,05-0,20 долей от расчетной электрической емкости (Ст), определенной из количества активной массы в положительных электродах, до зарядной емкости (0,8-1,2)·Ст. На первом цикле определяется давление водорода в конце заряда (Ркз). Разряжается батарея током (Iр), равным (0,05-0,20)·Ст, до напряжения конца разряда Uкp=n×(0,8-1,0), В, где n - количество аккумуляторных элементов в батарее;

Б) циклирование при токах Iз и Iр, равных (0,05-0,40)·Ст. Заряд ведется до Ркз, разряд до Uкр. Проводится 1-15 циклов;

B) циклирование при токах Iз и Iр, равных (0,1-0,8)·Ст. Заряд ведется до Ркз, разряд до Uкр. Проводится 3-15 циклов;

Г) циклирование при токах Iз и Iр, равных токам заряда и разряда при штатной эксплуатации. Заряд ведется до Ркз, разряд до Uкр. Циклирование ведется до постоянного значения разрядной емкости.

В процессе проведения приработочных зарядно-разрядных циклов происходит выбрасывание излишков электролита выделяющимся водородом из аккумуляторных элементов, о чем свидетельствует наличие электролита на дне технологического корпуса. Поэлементный контроль напряжения показывает, что с увеличением количества циклов повышается идентичность разрядных характеристик аккумуляторных элементов, при этом возрастает разрядная емкость (Ср) и практически достигает Ст и снижается давление водорода в конце разряда (Ркр). При достижении разброса энергоемкости между аккумуляторными элементами меньше 5% батарея устанавливается в штатный корпус и герметизируется.

В качестве примеров конкретного применения заявляемого технического решения приведены три варианта получения оптимального количества электролита в никель-водородных аккумуляторных батареях.

Пример 1

Батарея 5 НВ-4,3, Ст=4,5 Ач

Программа циклирования:

A) на первом цикле батарея заряжалась током Iз=0,66 А до емкости Сз=4,5 Ач, при этом давление (Ркз) в конце заряда составило 17 атм, после чего батарея разряжалась током Iр=0,66 А до напряжения (Uкр) 5,0 В;

Б) проведено 5 циклов Iз=Iр=0,66 А, батарея заряжалась до давления (Ркз) 17 атм, разряжалась - до напряжения (Uкр) 5,0 В;

B) проведено 7 циклов с увеличенными значениями токов заряда (Iз) и разряда (Iр) до 1,33 А, батарея заряжалась до давления (Ркз) 17 атм, разряжалась - до напряжения (Uкр) 5,0 В;

Г) проведено 10 циклов с токами заряда (Iз) 1,33 А и разряда (Iр) 2,0 А, соответствующими токам штатной эксплуатации, батарея заряжалась до давления (Ркз) 17 атм, разряжалась - до напряжения (Uкр) 5,0 В. Всего было проведено 23 приработочных зарядно-разрядных циклов, на последних четырех циклах емкость разряда составила 4,25-4,30 Ач. На фигуре 1 представлена зависимость изменения параметров батареи при циклировании.

Пример 2

Батарея 3 НВ-7,2, Ст=8,2 Ач

Программа циклирования:

A) Iз=Iр=1,0 А, Сз=9 Ач, Ркз=19,6 атм;

Б) Iз=Iр=1,0 А, Ркз=19,6 атм, Uкр=3,0 В, 5 циклов;

B) Iз=Iр=2,0 А, Ркз=19,6 атм, UKp=3,0 В, 10 циклов;

Г) Iз=2,0 А, Iр=4,0 А, Ркз=19,6 атм, Uкр=3,0 В, 24 цикла.

Проведено 40 приработочных зарядно-разрядных циклов, на последних пяти циклах емкость разряда составила 7,2 Ач.

На фигуре 2 представлена зависимость изменения параметров батареи при циклировании.

Пример 3

Батарея 28 НВ-12, Ст=14 Ач

Программа циклирования:

A) Iз=Iр=2,0 А, Сз=14 Ач, Ркз=59 атм;

Б) Iз=Iр=2,0 А, Ркз=59 атм, Uкр=28,0 В, 2 цикла;

B) Iз=2,0 А, Iр=4,0 А, Ркз=63 атм, Uкр=28,0 В, 7 циклов;

Г) Iз=Iр=4,0 А, Ркз=67,5 атм, Uкр=28,0 В, 8 циклов.

Проведено 18 приработочных зарядно-разрядных циклов, на последних двух циклах емкость разряда составила 12 Ач.

На фигуре 3 представлена зависимость изменения параметров батареи при циклировании.

Преимуществом предложенного способа получения оптимального количества электролита является возможность его применения для высоковольтных батарей, в каждом аккумуляторном элементе остается оптимальное количество электролита, независимо от различий в структурных характеристиках электродов и сепараторов, а отсутствие операции осушки исключает необходимость проведения трудоемкой операции перемонтажа и неоднократный контакт с воздухом.

Источники информации

1. Патент №504263, Н 01 М 10/30. Заявл. 06.08.1974.

2. Патент №2146068, Н 01 М 10/10, 12/08. Заявл. 02.03.1998.

Похожие патенты RU2227349C1

название год авторы номер документа
СПОСОБ ЦИКЛИРОВАНИЯ ЩЕЛОЧНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Кудрявцев Виктор Николаевич
  • Павлов Андрей Васильевич
  • Пугачев Виктор Иванович
  • Эйгель Феликс Исакович
RU2483401C1
СПОСОБ УСКОРЕННОГО ЗАРЯДА АСИММЕТРИЧНЫМ ТОКОМ ГЕРМЕТИЧНЫХ НИКЕЛЬ-КАДМИЕВЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ 2005
  • Кудрявцев Юрий Дмитриевич
  • Сушко Олег Викторович
  • Таргонский Игорь Людвигович
RU2284077C1
СПОСОБ АВТОМАТИЧЕСКОГО УСКОРЕННОГО ЗАРЯДА ГЕРМЕТИЧНЫХ НИКЕЛЬ-КАДМИЕВЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ АСИММЕТРИЧНЫМ ТОКОМ 2001
  • Сметанкин Г.П.
  • Сорин Л.Н.
  • Бурдюгов А.С.
  • Коньков А.А.
RU2207665C2
СПОСОБ УПРАВЛЕНИЯ ЭНЕРГОЕМКОСТЬЮ МЕТАЛЛ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ С ОБЩИМ ГАЗОВЫМ КОЛЛЕКТОРОМ 2006
  • Ковтун Владимир Семенович
  • Железняков Александр Григорьевич
  • Сагина Жанна Валерьевна
  • Матренин Владимир Иванович
  • Кондратьев Дмитрий Геннадьевич
RU2324262C2
УСТРОЙСТВО ДЛЯ ЗАРЯДНО-РАЗРЯДНОГО ЦИКЛИРОВАНИЯ АККУМУЛЯТОРНОЙ БАТАРЕИ 2008
  • Нагайкин Анатолий Семенович
RU2375791C2
СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2015
  • Рясной Николай Владимирович
  • Гуртов Александр Сергеевич
  • Фомакин Виктор Николаевич
  • Томина Валентина Степановна
  • Колесников Константин Сергеевич
RU2621694C9
СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ В СОСТАВЕ ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ 2009
  • Коротких Виктор Владимирович
  • Кочура Сергей Григорьевич
  • Нестеришин Михаил Владленович
RU2401487C1
СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ МОДУЛЬНОГО ИСПОЛНЕНИЯ (ВАРИАНТЫ) 2014
  • Пушкин Валерий Иванович
  • Гуртов Александр Сергеевич
  • Фомакин Виктор Николаевич
  • Данов Евгений Андреевич
  • Томина Валентина Степановна
RU2585171C1
СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА 2009
  • Гуртов Александр Сергеевич
  • Миненко Сергей Иванович
  • Фомакин Виктор Николаевич
  • Галкин Валерий Владимирович
  • Шевченко Юрий Михайлович
  • Горбачева Изабелла Васильевна
RU2399122C1
СПОСОБ УПРАВЛЕНИЯ ПАРАМЕТРАМИ АККУМУЛЯТОРОВ НИКЕЛЬ-ВОДОРОДНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА (ВАРИАНТЫ) 2014
  • Пушкин Валерий Иванович
  • Миненко Сергей Иванович
  • Гуртов Александр Сергеевич
  • Фомакин Виктор Николаевич
RU2586172C2

Иллюстрации к изобретению RU 2 227 349 C1

Реферат патента 2004 года СПОСОБ ПОЛУЧЕНИЯ ОПТИМАЛЬНОГО КОЛИЧЕСТВА ЭЛЕКТРОЛИТА В АККУМУЛЯТОРНОЙ БАТАРЕЕ

Изобретение относится к электроэнергетике. Согласно изобретению способ получения оптимального количества электролита в никель-водородной аккумуляторной батарее включает вакуумную пропитку аккумуляторных элементов до полного заполнения и удаление излишка электролита путем проведения зарядно-разрядных циклов в следующей последовательности: проводится первый цикл, в котором батарея заряжается током (Iз) 0,05-0,20 долей от расчетной электрической емкости (Ст) до зарядной емкости (0,8-1,2)·Ст, на первом цикле определяется давление водорода в конце заряда (Ркз), разряжается батарея током (Iр), равным (0,05-0,20)·Ст, до напряжения конца разряда Uкр=n×(0,8-1,0), В, где n - количество аккумуляторных элементов в батарее, затем проводится 1-15 циклов при токах Iз и Iр, равных (0,05-0,40)·Ст, заряд ведется до Ркз, разряд до Uкр, после проводится 3-15 циклов при токах Iз и Iр, равных (0,1-0,8)·Ст, заряд ведется до Ркз, разряд до Uкр, на последнем этапе проводится циклирование при токах Iз и Iр, равных токам заряда и разряда при штатной эксплуатации, заряд ведется до Ркз, разряд до Uкр, циклирование ведется до постоянного значения разрядной емкости. В процессе проведения зарядно-разрядных циклов происходит выбрасывание избытка электролита выделяющимся при заряде водородом. Техническим результатом изобретения является получение оптимального количества электролита. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 227 349 C1

1. Способ получения оптимального количества электролита в аккумуляторной батарее, включающий вакуумную пропитку аккумуляторных элементов до полного заполнения электролитом пористых сред с последующим удалением избытка электролита, отличающийся тем, что избыток электролита удаляется путем проведения зарядно-разрядных циклов в следующей последовательности, проводится первый цикл, в котором батарея заряжается током (Iз) 0,05-0,20 долей от расчетной электрической емкости (Ст) до зарядной емкости (0,8-1,2)·Ст, на первом цикле определяется давление водорода в конце заряда (Ркз), разряжается батарея током (Iр), равным (0,05-0,20)·Ст, до напряжения конца разряда Uкp=n×(0,8-1,0), В, где n - количество аккумуляторных элементов в батарее, затем проводится 1-15 циклов при токах Iз и Iр, равных (0,05-0,40)·Ст, заряд ведется до Ркз, разряд до Uкр, после проводится 3-15 циклов при токах Iз и Iр, равных (0,1-0,8)·Ст, заряд ведется до Ркз, разряд до Uкр, на последнем этапе проводится циклирование при токах Iз и Iр, равных токам заряда и разряда при штатной эксплуатации, заряд ведется до Ркз, разряд до Uкр, циклирование ведется до постоянного значения разрядной емкости.2. Способ получения оптимального количества электролита в аккумуляторной батарее по п.1, отличающийся тем, что давление в конце заряда, начиная со второго цикла, может варьироваться в пределах (0,8-1,2)·Ркз, полученного на первом цикле.

Документы, цитированные в отчете о поиске Патент 2004 года RU2227349C1

СПОСОБ ЗАПРАВКИ ЭЛЕКТРОЛИТОМ НИКЕЛЬ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ 1998
  • Кондратьев Д.Г.
  • Матренин В.И.
  • Попов В.Н.
RU2146068C1
US 5128600 А, 07.07.1992
Пожарный двухцилиндровый насос 0
  • Александров И.Я.
SU90A1
US 5173376 А, 22.12.1992.

RU 2 227 349 C1

Авторы

Матренин В.И.

Щипанов И.В.

Даты

2004-04-20Публикация

2002-07-22Подача