ГИДРАВЛИЧЕСКИЙ ЭЛЕКТРОНАСОС Российский патент 2004 года по МПК H02K44/06 

Описание патента на изобретение RU2230423C1

Изобретение относится к электромашиностроению, в частности к индукционным насосам, и может быть использовано в различных областях техники, например в качестве привода на морских судах.

Известен гидравлический электронасос индукционного типа для перекачки токопроводящей жидкости, который содержит статор (наружный магнитопровод) с трехфазной обмоткой и установленный соосно в его цилиндрическом отверстии неподвижно без зазора ротор с выполненным в нем, как минимум, двумя продольными пазами прямолинейной формы, наклоненных к радиальному направлению (RU 2140125 С1, 20.10.1999). При подключении к электросети трехфазной обмотки благодаря возникающему при этом вращающемуся магнитному полю токопроводящая жидкость перемещается в силу действия электромагнитных сил из одной емкости по указанным пазам в другую емкость.

Недостатком данного насоса является монотонное уменьшение от центральной части ротора к его периферийной части угла наклона касательной на расчетной траектории движения токопроводящей жидкости по всей длине продольного паза, что приводит к уменьшению движущей силы и тем самым к снижению производительности работы электронасоса.

Изобретение направлено на повышение производительности индукционного насоса путем частичного изменения его конструкции.

Поставленная задача решается тем, что в гидравлическом электронасосе, содержащем статор с трехфазной обмоткой и установленный в его цилиндрическом отверстии неподвижно без зазора ротор с выполненным в нем, как минимум, двумя продольными пазами, в роторе указанные пазы выполнены криволинейными.

На фиг.1 представлена конструктивная схема гидравлического электронасоса;

на фиг.2 - схема действия сил на произвольную частицу токопроводящей жидкости в пазе криволинейной формы.

Насос содержит статор 1 с трехфазной обмоткой 2, создающей вращающееся магнитное поле Ф, неподвижный ротор 3, установленный без зазора соосно в цилиндрическом отверстии статора 1, металлическое кольцо 4 и шайбу 5, закрепленные соосно соответственно к правому и левому торцам неподвижного ротора 3, и входной и выходной патрубки 6, 7, закрепленные соответственно на правой и левой сторонах статора 1 и нужные для подсоединения насоса к соответствующим емкостям.

В неподвижном роторе 3, выполняющем роль внутреннего магнитопровода, выполнены, как минимум, два криволинейных продольных паза на диаметрально противоположных частях ротора, имеющих постоянный угол наклона α касательной Т (в т. А) на всей расчетной траектории перемещения токопроводящей жидкости ОАВ к радиальному направлению R (см. фиг.2). В частности, криволинейные продольные пазы могут быть выполнены в форме логарифмической спирали.

Кольцо 4 обеспечивает сообщение центральных частей продольных пазов с полостью входного патрубка 6, а шайба 5 - сообщение периферийных частей указанных пазов с полостью выходного патрубка 7 (см. фиг.1). Кольцо 4 и шайба 5 наряду с отмеченными их функциями служат и торцевыми проводниками обмотки неподвижного ротора 3 как внутреннего магнитопровода, в качестве которой рассматривается токопроводящая жидкость.

Насос работает следующим образом.

При присоединении обмотки 2 к трехфазной электрической сети в статоре 1 наводится вращающееся магнитное поле Ф. Это поле пересекает токопроводящую жидкость в криволинейных пазах ротора 3 как внутреннего магнитопровода и индуктирует в ней ЭДС, под действием которой в жидкости возникает электрический ток. В результате взаимодействия последнего с магнитным полем Ф возникают электромагнитные силы проводника F (фиг.2), действующие на каждую частицу токопроводящей жидкости (в т. А). Указанные силы согласно правилу "левой руки" направлены перпендикулярно плоскости, в которой находятся магнитные линии поля Ф, и стремятся повернуть ротор 3 как внутренний магнитопровод в направлении вращения магнитного поля (по стрелке на фиг.2). В связи с тем, что ротор 3 (внутренний магнитопровод) находится в неподвижном состоянии относительно статора 1 (наружного магнитопровода), то токопроводящая жидкость (в т. А) будет двигаться под действием силы F1=F·sinα (фиг.2) из центральной части продольных пазов к их периферийной части.

Причем благодаря неизменности угла α на всей траектории перемещения токопроводящей жидкости ОАВ и сила F1 согласно представленной формуле будет постоянной, что позволит увеличить производительность электронасоса.

В рассматриваемом случае токопроводящая жидкость из одной емкости будет перемещаться по патрубку 6 через отверстие кольца 4 по продольным пазам неподвижного ротора 3 (внутреннего магнитопровода) и через кольцевую щель между шайбой 5 и патрубком 7 в полость последнего и далее в другую емкость (см. направление стрелок на фиг.1).

Если бы продольные пазы в роторе 3 (внутреннем магнитопроводе) были бы направлены в радиальном направлении (α=0), то на частицы токопроводящей жидкости не действовали бы силы F1, и в связи с этим указанная жидкость в роторе 3 (внутреннем магнитопроводе) оставалась бы неподвижной.

Применение данного изобретения в народном хозяйстве позволит более эффективно использовать возможности индукционных насосов.

Похожие патенты RU2230423C1

название год авторы номер документа
ГИДРАВЛИЧЕСКИЙ ЭЛЕКТРОНАСОС 1997
  • Хван Ю.Я.
  • Хван Д.В.
  • Хван А.Д.
  • Горячев А.А.
  • Баканов А.Г.
RU2140125C1
ГИДРАВЛИЧЕСКИЙ ЭЛЕКТРОНАСОС 2012
  • Хван Александр Дмитриевич
  • Писаревский Александр Юрьевич
  • Писаревский Юрий Валентинович
  • Бородкин Николай Митрофанович
  • Крук Александр Тимофеевич
  • Крук Виталий Александрович
  • Хван Дмитрий Владимирович
  • Бахматова Анна Сергеевна
RU2537790C2
ГИДРАВЛИЧЕСКИЙ ЭЛЕКТРОНАСОС 2015
  • Хван Александр Дмитриевич
  • Пархоменко Георгий Анатольевич
  • Хван Дмитрий Владимирович
RU2593838C1
ГИДРАВЛИЧЕСКИЙ ЭЛЕКТРОНАСОС 2015
  • Хван Александр Дмитриевич
  • Пархоменко Георгий Анатольевич
  • Хван Дмитрий Владимирович
  • Бородкин Николай Митрофанович
  • Крук Виталий Александрович
RU2599128C1
ГЕРМЕТИЧНЫЙ БЕСКОНТАКТНЫЙ СИНХРОННЫЙ ГЕНЕРАТОР ТОРЦЕВОГО ТИПА 1994
  • Базилевский Александр Борисович
RU2101838C1
Устройство для магнитной обработки жидкости 1984
  • Кротов Николай Тарасович
SU1188106A1
ЭЛЕКТРОДВИГАТЕЛЬ ДЛЯ ПОГРУЖНЫХ ЭЛЕКТРОНАСОСОВ 2011
  • Пимуллин Геннадий Иркабаевич
  • Пимуллина Рамиля Ахатовна
  • Пимуллин Денис Геннадьевич
  • Пимуллин Даниэль Геннадьевич
RU2487273C1
ЧЕРПАКОВЫЙ ЭЛЕКТРОНАСОС 2006
  • Загрядцкий Владимир Иванович
  • Кобяков Евгений Тихонович
RU2309296C1
ИНДУКЦИОННЫЙ ЦИЛИНДРИЧЕСКИЙ НАСОС 2004
  • Анисимов Евгений Павлович
  • Дрыгина Тамара Алексеевна
  • Вахрушин Михаил Петрович
  • Степанов Владимир Сергеевич
  • Драгунов Юрий Григорьевич
RU2282932C2
МОНОБЛОЧНЫЙ ЧЕРПАКОВЫЙ ЭЛЕКТРОНАСОС 2008
  • Загрядцкий Владимир Иванович
  • Кобяков Евгений Тихонович
RU2365789C1

Иллюстрации к изобретению RU 2 230 423 C1

Реферат патента 2004 года ГИДРАВЛИЧЕСКИЙ ЭЛЕКТРОНАСОС

Изобретение относится к области электромашиностроения, в частности к индукционным насосам, и может использоваться в судостроении, атомной энергетике и других отраслях промышленности. Гидравлический электронасос содержит статор с трехфазной обмоткой и установленный соосно в его цилиндрическом отверстии неподвижно без зазора ротор с выполненными в нем, как минимум, двумя продольными пазами, наклоненными к радиальному направлению. В роторе продольные пазы выполнены криволинейными. Изобретение направлено на повышение производительности работы гидравлического электронасоса, что позволит достаточно эффективно использовать указанные насосы в народном хозяйстве. 2 ил.

Формула изобретения RU 2 230 423 C1

Гидравлический электронасос, содержащий статор с трехфазной обмоткой и установленный соосно в его цилиндрическом отверстии неподвижно без зазора ротор с выполненными в нем как минимум двумя продольными пазами, наклоненными к радиальному направлению, отличающийся тем, что продольные пазы выполнены криволинейными.

Документы, цитированные в отчете о поиске Патент 2004 года RU2230423C1

ГИДРАВЛИЧЕСКИЙ ЭЛЕКТРОНАСОС 1997
  • Хван Ю.Я.
  • Хван Д.В.
  • Хван А.Д.
  • Горячев А.А.
  • Баканов А.Г.
RU2140125C1
ВИНТОВОЙ ЭЛЕКТРОМАГНИТНЫЙ НАСОС 1996
  • Радкевич Николай Александрович
RU2106735C1
Электрический насос 1923
  • Федоров В.В.
SU1627A1
US 2910941 A, 03.11.1959
US 3196795 A, 27.07.1965
УСТРОЙСТВО ОТВОДА ТЕПЛОТЫ ОТ КРИСТАЛЛА ПОЛУПРОВОДНИКОВОЙ МИКРОСХЕМЫ 2010
  • Дроздов Игорь Геннадьевич
  • Кожухов Николай Николаевич
  • Коновалов Дмитрий Альбертович
  • Шматов Дмитрий Павлович
  • Дахин Сергей Викторович
  • Савинков Андрей Юрьевич
  • Небольсин Валерий Александрович
RU2440641C1
US 2929326 A, 22.03.1960.

RU 2 230 423 C1

Авторы

Хван Д.В.

Федорков Е.Д.

Хван А.Д.

Горячев А.А.

Даты

2004-06-10Публикация

2002-10-21Подача