ПЫЛЕУДАРНЫЙ МАСС-СПЕКТРОМЕТР Российский патент 2004 года по МПК H01J49/40 

Описание патента на изобретение RU2235386C2

Изобретение относится к приборостроению, системам автоматизации и системам управления, а именно к области космических исследований.

Известен масс-спектрометр, содержащий мишень, линейное электростатическое зеркало, приемник ионов и ускоряющую сетку (Сысоев А.А., Сурков Ю.А., Леонтьев В.А. и др.//ПТЭ, 1993, №4, стр.126).

Недостатками являются большие потери ионов и малая разрешающая способность.

Наиболее близким к предлагаемому устройству является масс-спектрометр, содержащий мишень, плоский электростатический отражатель, приемник ионов, электростатический цилиндрический отражатель, фокусирующие электроды полусферической формы, блок обработки ионного спектра, источник ионов, управляющую сетку, ускоряющую сетку, выходную сетку, нагреватель, отражатель, источник тока нагревателя, источник тока и напряжения отражателя, источник напряжения управляющей сетки, источник изменяемого во времени импульсного напряжения, выталкивающую сетку и источник напряжения (патент №2122257, МПК Н 01 J 49/40, опубл. 20.11.98, бюл. №32).

Недостатками прототипа являются малая разрешающая способность на больших массах и высокие потери ионов.

Поставлена задача разработать пылеударный масс-спектрометр с высокой разрешающей способностью по массе и малыми потерями ионов, позволяющий расширить функциональные возможности, повысить чистоту эксперимента по исследованию состава пылевых частиц.

Поставленная задача достигается тем, что в устройстве, содержащем мишень с отверстиями: одним в центре и четырьмя на периферии, приемники ионов, выталкивающую сетку, источник изменяемого во времени импульсного напряжения, источник напряжения и блок обработки ионных спектров, согласно изобретению введены четыре тороидальных дефлектора, состоящих из внутренних отклоняющих электродов и внешних отклоняющих электродов, расположенных с обратной стороны мишени, причем входы тороидальных дефлекторов совмещены между собой и с отверстием в центре мишени, а выходы - с соответствующими отверстиями на периферии мишени; иммерсионная линза, состоящая из заземленной и отражающей сеток, расположенная на фокусном расстоянии от рабочей поверхности мишени, блок индикации, усилитель, электронный ключ и источник отклоняющих напряжений; мишень подключена к входу усилителя и выходу источника изменяемого во времени импульсного напряжения, вход электронного ключа соединен с выходом усилителя, а выход - с входом источника изменяемого во времени импульсного напряжения; выходы приемников ионов подключены к входам блока обработки ионных спектров, выход которого соединен с входом блока индикации; отражающая сетка подключена к источнику напряжения; заземленная сетка иммерсионной линзы и выталкивающая сетка находятся под нулевым потенциалом, а внутренние и внешние отклоняющие электроды тороидальных дефлекторов подсоединены к выходам источника отклоняющих напряжений.

На фиг.1 представлена структурная схема устройства;

на фиг.2 - конструкция тороидального дефлектора

Пылеударный масс-спектрометр содержит мишень 1 с одним отверстием в центре и четырьмя отверстиями на периферии, приемники ионов 2, иммерсионную линзу, состоящую из отражающей сетки 3 и заземленной сетки 4 и расположенную на фокусном расстоянии от рабочей стороны мишени, выталкивающую сетку 5, четыре тороидальных дефлектора, составленных из внутренних отклоняющих электродов 6 и внешних отклоняющих электродов 7, причем входы тороидальных дефлекторов совмещены между собой и с отверстием в центре мишени 1, а выходы - с соответствующими отверстиями на периферии мишени 1; источник отклоняющих напряжений 8, усилитель 9, электронный ключ 10, источник изменяемого во времени импульсного напряжения 11, источник напряжения 12, блок обработки ионных спектров 13 и блок индикации 14. Мишень 1 подключена к входу усилителя 9 и выходу источника изменяемого во времени импульсного напряжения 11, вход электронного ключа 10 соединен с выходом усилителя 9, а выход - с входом источника изменяемого во времени импульсного напряжения 11. Выходы всех четырех приемников ионов 2 подключены к входам блока обработки ионных спектров 13, выход которого соединен со входом блока индикации 14. Отражающая сетка 3 иммерсионной линзы подключена к источнику напряжения 12, а заземленная сетка иммерсионной линзы 4 и выталкивающая сетка 5 находятся под нулевым потенциалом. Внутренние отклоняющие электроды 6 и внешние отклоняющие электроды 7 тороидальных дефлекторов подсоединены к выходам источника отклоняющих напряжений 8. Мишень 1 имеет пять отверстий: одно в центре и четыре симметрично относительно центра на периферии. Тороидальные дефлекторы расположены с обратной стороны мишени, а иммерсионная линза - с рабочей стороны мишени. Электроды иммерсионной линзы 4 и 3 выполнены в виде секторов концентрических сфер, а сама иммерсионная линза расположена таким образом, что ее фокус находится в центре мишени 1.

Устройство работает следующим образом. Пылевая частица соударяется с рабочей стороной мишени 1 и путем ударной ионизации превращается в слабоионизованный газ. Импульс удара усиливается усилителем 9 и при помощи ключа 10 по прошествии времени τ снимает напряжение с мишени 1, подаваемое источником изменяемого во времени импульсного напряжения 11. Ускоренные за время τ ионы вылетают в бесполевое пространство между вталкивающей сеткой 5 и заземленной сеткой 4, отражаются иммерсионной линзой, фокусируясь в центре мишени. Дальше ионный пакет разделяется на четыре части, каждая из которых проходит один из тороидальных дефлекторов, настроенный на определенный диапазон масс ионов, и попадают в соответствующий приемник ионов 2. Сигнал с приемников ионов 2 обрабатывается в блоке обработки ионных спектров 13 и выводится на блок индикации 14.

Поскольку ионные пакеты проходят мишень сфокусированными пучками, большая ее часть является рабочей. Тем самым увеличивается коэффициент сбора ионов, а следовательно, увеличивается чувствительность прибора.

Тороидальные дефлекторы дополнительно фокусируют ионные пакеты, увеличивая разрешающую способность (разрешающая способность достигает 500). К тому же каждый из тороидальных дефлекторов настроен на свой диапазон масс, внутри которого разрешающая способность максимальна. Таким образом, удается избежать уменьшения разрешающей способности на больших массах. Такое деление диапазона положительно сказывается на увеличении общей разрешающей способности масс-спектрометра.

Настройка тороидальных дефлекторов осуществляется посредством изменения геометрических параметров R2 и R1 (фиг.2) внешнего и внутреннего электродов и расстояния между ними, а также изменением напряжений на электродах. Угол ϕ исходя из условий фокусировки вычисляется:

где Rотр - эффективный радиус иммерсионной линзы,

L - расстояние от выхода тороидального дефлектора до соответствующего приемника ионов.

Устройство позволяет определить состав микрометеоритов и пылевых частиц малой концентрации с высокой разрешающей способностью.

Похожие патенты RU2235386C2

название год авторы номер документа
ПЫЛЕУДАРНЫЙ МАСС-СПЕКТРОМЕТР 2006
  • Семкин Николай Данилович
  • Пияков Игорь Владимирович
  • Пияков Алексей Владимирович
  • Воронов Константин Евгеньевич
  • Помельников Роман Александрович
RU2326465C2
ЦИКЛИЧЕСКИЙ МАСС-СПЕКТРОМЕТР ГАЗОВЫХ ЧАСТИЦ 2012
  • Семкин Николай Данилович
  • Пияков Алексей Владимирович
  • Пияков Игорь Владимирович
  • Родин Дмитрий Владимирович
  • Телегин Алексей Михайлович
RU2504044C2
ПЫЛЕУДАРНЫЙ МАСС-СПЕКТРОМЕТР 1996
  • Семкин Н.Д.
  • Воронов К.Е.
RU2122257C1
ГАЗОПЫЛЕУДАРНЫЙ МАСС-СПЕКТРОМЕТР 2002
  • Семкин Н.Д.
  • Воронов К.Е.
  • Помельников Р.А.
  • Пияков И.В.
RU2231860C2
МАСС-СПЕКТРОМЕТР ГАЗОВЫХ ЧАСТИЦ 2001
  • Семкин Н.Д.
  • Пияков И.В.
  • Воронов К.Е.
  • Помельников Р.А.
RU2239909C2
ЭНЕРГОМАСС-СПЕКТРОМЕТР ВТОРИЧНЫХ ИОНОВ 1990
  • Никитенков Н.Н.
  • Косицын Л.Г.
  • Шулепов И.А.
RU2020645C1
ВРЕМЯПРОЛЕТНЫЙ МАСС-СПЕКТРОМЕТР С НЕЛИНЕЙНЫМ ИСТОЧНИКОМ ИОНОВ 2015
  • Семкин Николай Данилович
  • Пияков Игорь Владимирович
  • Родин Дмитрий Владимирович
  • Родина Марина Александровна
RU2623729C2
ВРЕМЯПРОЛЕТНЫЙ МАСС-СПЕКТРОМЕТР 2001
  • Семкин Н.Д.
  • Воронов К.Е.
  • Пияков И.В.
  • Помельников Р.А.
RU2239910C2
Способ формирования массовой линии ионов во времяпролетном масс-спектрометре 1988
  • Семкин Николай Данилович
  • Юсупов Гамир Якубович
  • Бочкарев Валерий Александрович
  • Семенчук Сергей Михайлович
SU1691905A1
Способ формирования массовой линии ионов во времяпролетном масс-спектрометре 2016
  • Воронов Константин Евгеньевич
  • Пияков Игорь Владимирович
  • Родин Дмитрий Владимирович
  • Родина Марина Александровна
RU2644578C1

Иллюстрации к изобретению RU 2 235 386 C2

Реферат патента 2004 года ПЫЛЕУДАРНЫЙ МАСС-СПЕКТРОМЕТР

Масс-спектрометрия преимущественно для космических исследований. В пылеударный масс-спектрометр дополнительно введены четыре тороидальных дефлектора, состоящих из внутренних отклоняющих электродов 6 и внешних отклоняющих электродов 7, расположенных с обратной стороны мишени 1, причем входы тороидальных дефлекторов совмещены между собой и с отверстием в центре мишени, а выходы - с соответствующими отверстиями на периферии мишени; иммерсионная линза, состоящая из заземленной 4 и отражающей 3 сеток, расположенная на фокусном расстоянии от рабочей поверхности мишени 1, блок индикации 14, усилитель 9, электронный ключ 10 и источник отклоняющих напряжений 8. Мишень подключена к входу усилителя 9 и выходу источника изменяемого во времени импульсного напряжения 11. Вход электронного ключа 10 соединен с выходом усилителя 9, а выход - с входом источника изменяемого во времени импульсного напряжения 11. Выходы приемников ионов 2 подключены к входам блока обработки ионных спектров 13, выход которого соединен с входом блока индикации 14. Отражающая сетка 3 подключена к источнику напряжения 12. Заземленная сетка иммерсионной линзы 4 и выталкивающая сетка 5 находятся под нулевым потенциалом, а внутренние и внешние отклоняющие электроды тороидальных дефлекторов подсоединены к выходам источника отклоняющих напряжений 8. Устройство позволяет определять состав микрометеоритов и пылевых частиц малой концентрации с высокой разрешающей способностью. 2 ил.

Формула изобретения RU 2 235 386 C2

Пылеударный масс-спектрометр, содержащий мишень с одним отверстием в центре и четырьмя отверстиями на периферии, приемники ионов, выталкивающую сетку, источник изменяемого во времени импульсного напряжения, источник напряжения и блок обработки ионных спектров, отличающийся тем, что в него введены четыре тороидальных дефлектора, состоящих из внутренних отклоняющих электродов и внешних отклоняющих электродов, расположенных с обратной стороны мишени, причем входы тороидальных дефлекторов совмещены между собой и с отверстием в центре мишени, а выходы - с соответствующими отверстиями на периферии мишени; иммерсионная линза, состоящая из заземленной и отражающей сеток, расположенная на фокусном расстоянии от рабочей поверхности мишени, блок индикации, усилитель, электронный ключ и источник отклоняющих напряжений; мишень подключена к входу усилителя и выходу источника изменяемого во времени импульсного напряжения, вход электронного ключа соединен с выходом усилителя, а выход - с входом источника изменяемого во времени импульсного напряжения; выходы приемников ионов подключены к входам блока обработки ионных спектров, выход которого соединен с входом блока индикации; отражающая сетка подключена к источнику напряжения; заземленная сетка иммерсионной линзы и выталкивающая сетка находятся под нулевым потенциалом, а внутренние и внешние отклоняющие электроды тороидальных дефлекторов подсоединены к выходам источника отклоняющих напряжений.

Документы, цитированные в отчете о поиске Патент 2004 года RU2235386C2

УСТРОЙСТВО ДЛЯ РАЗДЕЛЕНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ ПО МАССАМ 1996
RU2098170C1
УСТРОЙСТВО ДЛЯ РАЗДЕЛЕНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ ПО МАССАМ 1997
  • Евстигнеев В.В.
  • Доронин В.Т.
RU2133141C1
ПЫЛЕУДАРНЫЙ МАСС-СПЕКТРОМЕТР 1996
  • Семкин Н.Д.
  • Воронов К.Е.
RU2122257C1
US 5026987 А, 25.06.1991.

RU 2 235 386 C2

Авторы

Семкин Н.Д.

Пияков И.В.

Воронов К.Е.

Помельников Р.А.

Даты

2004-08-27Публикация

2002-02-08Подача