Изобретение относится к горному делу и может быть использовано для освоения и восстановления дебита эксплуатационных скважин, понизившегося вследствие закупоривания (кольматации) пласта асфальто-смолистыми и парафиновыми образованиями.
Известен скважинный дроссельный нагреватель (Дегтярев Б.В., Бухгалтер Э.Б. Борьба с гидратами при эксплуатации газовых скважин в Северных районах. - М.: Недра, 1976), основанный на преобразовании энергии давления жидкости в теплоту.
Однако применение дроссельного нагревателя связано с высокими затратами ввиду использования не менее трех колонн насосно-компрессорных труб, а также с низким кпд из-за гидравлического сопротивления и потерь давления в резьбовых соединениях насосно-компрессорных труб.
Известен способ гидроразрыва пласта (Соловьев Г.Н. и др. Патент №2046184 "Способ гидравлического разрыва пласта", Кл. Е 21 В 43/26, 1995), в котором повышение давления в изолированном участке пласта осуществляют нагревом жидкости посредством установки электронагревателя.
Недостаток заключается в малом количестве энергии, передаваемой в призабойную зону.
Известен способ воздействия на призабойную зону нефтяной скважины (Шипулин А.В., Загривный Э.А., Кудряшов Б.Б. и др. Патент №2164597, "Термодинамический способ воздействия на призабойную зону", Кл. Е21 В 43/25), в котором нагрев жидкости производят за счет турбулентного движения жидкости при ее механическом перемешивании.
Однако устройство для реализации способа требует центровки и балансировки подвижных элементов в заводских условиях для снижения вибрации и повышения надежности до допустимого уровня.
Известен способ воздействия на призабойную зону нефтяной скважины (Шипулин А.В., Габдрахманов Н.Х., Мингулов Ш.Г. и др. Патент №2176313, "Термодинамический способ воздействия на призабойную зону", Кл. Е 21 В 43/25), взятый за прототип, в котором нагрев жидкости производят путем ее прокачивания по контуру: выход погружного скважинного электронасоса - гидравлическое сопротивление - изолированный пакерами интервал скважины - вход погружного скважинного электронасоса.
Однако количество ступеней гидравлического сопротивления и сечения калиброванных отверстий в ступенях постоянны, а скважинная жидкость изменяет свою вязкость от температуры, а также от количества и концентрации асфальто-смоло-парафиновых составляющих флюида нефтяного коллектора, что усложняет наладку (с подъемами оборудования на поверхность) и способствует закупориванию каналов гидравлического сопротивления.
Задачей изобретения является сохранение оптимального расхода электронасоса при изменении вязкости скважинного флюида и присутствии механических примесей.
Задача решается тем, что при термодинамическом воздействии на призабойную зону скважины, включающем повышение давления нагревом жидкости в изолированном пакерами интервале скважины против продуктивного пласта путем прокачивания жидкости по контуру: выход погружного скважинного электронасоса - гидравлическое сопротивление - изолированный пакерами интервал скважины - вход погружного скважинного электронасоса до достижения его декольматации, а также гидроразрыва используют гидравлическое сопротивление, способное изменять свое проходное сечение от вязкости прокачиваемой жидкости под действием изменения температуры.
Пример устройства для реализации предлагаемого способа поясняется чертежом, на котором 1 - скважина; 2 - погружной электронасос; 3 - гидравлическое сопротивление; 4 - пакер; 5 - мембрана с отверстием и клапанным седлом; 6 - шарик; стрелками показано направление циркуляции жидкости.
Способ реализуют следующим образом. В скважину 1 до глубины продуктивного пласта опускают соединенные последовательно погружной электронасос 2 и гидравлическое сопротивление 3. Участок скважины с электронасосом и гидравлическим сопротивлением изолируют пакером 4.
С включением погружного электронасоса жидкость циркулирует по контуру: выход скважинного электронасоса - гидравлическое сопротивление - изолированная зона скважины - вход погружного электронасоса. При прохождении жидкости через гидравлическое сопротивление выделяется теплота, то есть происходит преобразование энергии струи жидкости в тепловую энергию.
Гидравлическое сопротивление способно изменять свое проходное сечение, например, если оно имеет одно или несколько последовательно расположенных мембран с калиброванными отверстиями, используют конструкцию шарикового клапана. Калиброванное отверстие мембраны имеет седло 5, над которым находится шарик 6. Шарик прижимается к седлу пружиной или собственным весом.
Если вязкость скважинной жидкости увеличивается, то изменяется число Рейнольдса
где v - скорость движения жидкости;
d - диаметр канала;
ρ - плотность жидкости;
μ - динамическая вязкость жидкости.
Число Рейнольдса, в свою очередь, влияет на коэффициент сопротивления
где ξ -коэффициент сопротивления;
а - константа;
ξ∞ - коэффициент сопротивления в квадратичном режиме (в зоне развитого турбулентного движения).
От величины коэффициента сопротивления зависит перепад давления на гидравлическом сопротивлении
где ΔР - перепад давления на гидравлическом сопротивлении.
Или
Изменение температуры влияет на вязкость в намного большей степени, чем на ξ∞, и скорость движения жидкости.
При увеличении вязкости жидкости, протекающей через шариковый клапан, зазор между седлом и шариком за счет перепада давления увеличивается, уменьшается величина гидравлического сопротивления, скорость движения жидкости и, следовательно, расход электронасоса приводятся к оптимальному значению.
При уменьшении вязкости жидкости зазор между седлом и шариком, соответственно, уменьшается.
В случае попадания частицы высокой вязкости или мехпримеси она смещает шарик и проходит через увеличенный зазор, снижается возможность закупорки отверстия гидравлического сопротивления.
Подбором диаметра отверстий, количества ступеней, а также пружин или шариков определенного веса сохраняют оптимальный режим работы электронасоса, независимый от изменения вязкости жидкости.
Возможны другие конструкции отверстия переменного сечения, например, отверстие с подпружиненными, отгибающимися краями.
Преимущества предлагаемого способа заключаются в увеличении надежности работы, снижении вероятности аварийного подъема оборудования из-за закупорки отверстия мембраны, возможности автоматического регулирования параметров нагревателя при изменении вязкости жидкости.
Литература
Чугаев Р.Р. Гидравлика (техническая механика жидкости). - 4-е изд., доп. и перераб. - Л.: Энергоиздат. Ленингр. отд-ние, 1982, 672 с., ил.
название | год | авторы | номер документа |
---|---|---|---|
ТЕРМОДИНАМИЧЕСКИЙ СПОСОБ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ | 2000 |
|
RU2176313C1 |
ТЕРМОДИНАМИЧЕСКИЙ СПОСОБ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ | 2001 |
|
RU2203410C1 |
ТЕРМОДИНАМИЧЕСКИЙ СПОСОБ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ | 1998 |
|
RU2149259C1 |
ТЕРМОДИНАМИЧЕСКИЙ СПОСОБ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ | 1999 |
|
RU2164597C2 |
СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА | 1992 |
|
RU2046184C1 |
СКВАЖИННАЯ СТРУЙНАЯ УСТАНОВКА ДЛЯ ГИДРОРАЗРЫВА ПЛАСТА И ИССЛЕДОВАНИЯ ГОРИЗОНТАЛЬНЫХ СКВАЖИН И СПОСОБ ЕЕ РАБОТЫ | 2007 |
|
RU2341692C1 |
Способ обработки призабойной зоны пласта и устройство для его осуществления | 2022 |
|
RU2782227C1 |
Способ проведения повторного многостадийного гидроразрыва пласта в скважине с горизонтальным окончанием с применением обсадной колонны меньшего диаметра | 2021 |
|
RU2775112C1 |
Термодинамический способ воздействия на призабойную зону скважины и устройство для его осуществления | 2020 |
|
RU2730707C1 |
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА | 1990 |
|
RU2015445C1 |
Изобретение относится к горному делу и может быть использовано для освоения и восстановления дебита эксплуатационных скважин, понизившегося вследствие закупоривания пласта асфальто-смолистыми и парафиновыми образованиями. При использовании термодинамического способа воздействия на призабойную зону скважины повышают давление нагревом жидкости в изолированном пакерами интервале скважины против продуктивного пласта. Для этого прокачивают жидкость по контуру: выход погружного скважинного электронасоса - гидравлическое сопротивление - изолированный пакерами интервал скважины - вход погружного скважинного электронасоса до достижения декольматации пласта, а также гидроразрыва. Используют гидравлическое сопротивление, способное изменять свое проходное сечение в зависимости от вязкости прокачиваемой жидкости под действием изменения температуры. Сохраняется оптимальный расход жидкости, прокачиваемой электронасосом при изменении вязкости скважинного флюида и присутствии механических примесей. 1 ил.
Термодинамический способ воздействия на призабойную зону скважины, включающий повышение давления нагревом жидкости в изолированном пакерами интервале скважины против продуктивного пласта путем прокачивания жидкости по контуру: выход погружного скважинного электронасоса - гидравлическое сопротивление - изолированный пакерами интервал скважины - вход погружного скважинного электронасоса до достижения его декольматации, а также гидроразрыва, отличающийся тем, что используют гидравлическое сопротивление, способное изменять свое проходное сечение от вязкости прокачиваемой жидкости под действием изменения температуры.
ТЕРМОДИНАМИЧЕСКИЙ СПОСОБ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ | 2000 |
|
RU2176313C1 |
ТЕПЛОГЕНЕРАТОР И УСТРОЙСТВО ДЛЯ НАГРЕВА ЖИДКОСТЕЙ | 1993 |
|
RU2045715C1 |
СПОСОБ УВЕЛИЧЕНИЯ ПРОДУКТИВНОСТИ НЕФТЯНОЙ СКВАЖИНЫ | 1998 |
|
RU2144135C1 |
ТЕРМОДИНАМИЧЕСКИЙ СПОСОБ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ | 1998 |
|
RU2149259C1 |
Скважинный электронагреватель | 1990 |
|
SU1703810A1 |
SU 1537798 A2, 23.01.1990 | |||
Дорожная спиртовая кухня | 1918 |
|
SU98A1 |
Авторы
Даты
2004-12-10—Публикация
2001-12-27—Подача