Изобретение относится к нефтяной промышленности и может быть использовано для восстановления продуктивности добывающих скважин и приемистости нагнетательных скважин, а также для освоения скважин после бурения.
Известен способ очистки призабойной зоны пласта (ПЗП) путем создания депрессии на призабойную зону нагнетанием воздуха в кольцевое пространство между эксплуатационной колонной и насосно-компрессорными трубами и последующим подавлением воздуха водным раствором поверхностно-активных веществ (ПАВ) с изолированием межтрубного пространства при помощи пакерующего элемента (А.с. №426029 СССР, E 21 B 43/22, 1972).
Недостатком этого способа является низкое качество очистки и сложность реализации, связанная с обеспечением герметичности межтрубного пространства пакерующим элементом, что существенно снижает его эффективность.
Известен также способ очистки призабойной зоны пласта путем создания депрессии нагнетанием воздуха в межтрубное пространство и последующим подавлением его жидкостью, разрежением давления в межтрубном пространстве (Аллахвердиев Р.А. Интенсификация притока методом циклического импульсного воздействия на призабойную зону пласта. Нефтепромысловое дело и транспорт нефти. - №3. - 1985. - с.10-12).
Недостатком способа является низкая эффективность очистки ПЗП, связанная с тем, что при быстрой разрядке давления в межтрубном пространстве происходит бурное выделение газа из нефтяного пласта, что приводит к закупориванию пор пород ПЗП.
Наиболее близким по технической сущности является способ освоения нефтяных скважин, включающий нагнетание воздуха в пространство между насосно-компрессорными трубами и обсадной колонной, продувку его жидкостью и сброс давления в межтрубном пространстве, причем сброс давления осуществляют плавно со скоростью 2-2,5 МПа/ч, а по окончании процесса сброса производят гидравлический удар на забой скважины вращающимся потоком падающей жидкости из насосно-компрессорных труб жидкости, а продуктивные пласты представлены слабоцементированными породами (патент №1682540 RU, E 21 B 43/25, 1993).
Недостаток этого способа заключается в том, что при нагнетании воздуха в пространство между насосно-компрессорными трубами (НКТ) и обсадной колонной при наличии в ней углеводородной среды повышается взрыво- и пожароопасность.
Кроме того, в процессе очистки скважины происходит резкое падение давления в НКТ и ПЗП и выброс воздуха и жидкости из НКТ, в результате чего возможно возникновение аварийной ситуации. Дополнительный недостаток способа - отсутствие предварительной стадии очистки ПЗП.
Предлагаемое изобретение направлено на решение задачи, заключающейся в устранении опасности возникновения аварийной ситуации и повышении успешности обработки скважин.
Технический результат, реализуемый при использовании этого изобретения - повышение пожарной и взрывобезопасности и повышение эффективности очистки призабойной зоны пласта.
Указанный технический результат при осуществлении предлагаемого изобретения достигается тем, что способ очистки призабойной зоны пласта, включающий создание установкой для нагнетания продавочной жидкости и газов газовой подушки нагнетанием газа в межтрубное пространство, последующее нагнетание продавочной жидкости с вытеснением жидкости из межтрубного пространства по колонне насосно-компрессорных труб (НКТ) в емкость или амбар, сброс давления из межтрубного пространства до атмосферного и воздействие гидравлическим ударом на забой скважины вращающимся потоком жидкости из НКТ по окончании процесса сброса давления, в качестве газа используют смесь воздуха и выхлопных газов в соотношении не более 2:3 с созданием газовой подушки давлением, обеспечивающим избежание попадания газа в НКТ, а объем продавочной жидкости определяют по формуле:
Vпж=0,785· (d
где d1 - внутренний диаметр обсадной колонны, мм;
d2 - наружный диаметр насосно-компрессорных труб (НКТ), мм;
Ннкт - глубина спуска НКТ в скважину, м;
Hго - высота газовой подушки в межтрубном пространстве, м;
Нго=К· Рго,
К - гидростатический коэффициент противодействия продавливанию жидкости и газа (К=100 м/МПа), м/МПа;
Pго - конечное давление газовой подушки, МПа;
Нкз - высота межтрубного пространства, необходимая для критического запаса при продавливании газа жидкостью (Нкз≥50 м).
Определение объема продавочной жидкости необходимо для того, чтобы избежать попадания газа в НКТ при очистки ПЗП.
Соотношение воздуха и выхлопных газов выбирают не более 2:3, по объему, для того чтобы устранить воспламенение нефтяного газа при закачке смеси в межтрубное пространство.
До нагнетания смеси воздуха и выхлопных газов в межтрубное пространство выполняют кислотную обработку ПЗП. Особенность кислотной обработки заключается в том, что для уменьшения скорости реагирования при соляно-кислотной обработке призабойной зоны пласта нагнетательных и добывающих скважин в соляную кислоту добавляют поверхностно-активные вещества нефтенол ВВД, гидрофобизатор ИВВ. Это позволяет согласовать во времени процесс химического воздействия и депрессионной очистки ПЗП и исключить вторичное загрязнение ПЗП.
Сущность изобретения заключается в том, что в качестве смеси воздуха и выхлопных газов в газовой подушке межтрубного пространства используют пожаро- и взрывобезопасную смесь в условиях углеводородной среды. Для этого используют смесь воздуха и выхлопных газов двигателя внутреннего сгорания - основного элемента установки нагнетания в межтрубное пространство. Соотношение объемов воздуха и выхлопных газов, принимаемое не более 2:3, обеспечивает содержание кислорода в смеси газов не более 8,4% и пожаро- и взрывобезопасность (Левин А.М. Принципы рационального сжигания газа. Л.: Недра, 1977. - с.30-33).
Кроме того, уменьшается опасность аварии путем учета (допустимого) объема продавочной жидкости, зависящего от параметров скважинного оборудования и газовой подушки.
На фиг.1 приведена схема реализации способа; на фиг.2 - вариант блок-схемы устройства для получения взрывобезопасного газа.
Схема реализации (фиг.1 и фиг.2) включает обсадную колонну 1, насосно-компрессорную трубу 2, соединительную трубу 3, задвижки 4-9, трубопроводы 10-12, установку для нагнетания смеси воздуха и выхлопных газов и воды 13, соединенную через трубы 11, 12 и 3, задвижки 5, 6 и 7 с межтрубным пространством 14. Выход установки 13 соединен также через охладитель 15 выхлопных газов, расходомер газов 16 с входом эжектора 17, второй вход которого соединен через задвижку 18 и расходомер воздуха 19 с атмосферным воздухом. Выход эжектора 17 соединен с входом установки 13, второй вход которой соединен через расходомер воды 20 с емкостью 21 для воды. В качестве установки для нагнетания смеси воздуха и выхлопных газов и воды 13 в межтрубное пространство 14 могут быть использованы насосно-эжекторные, компрессорные, газобустерные установки, например, самоходные установки типа УНГ 8/15, которые обеспечивают требуемые параметры газожидкостной смеси по давлению и производительности.
Соединительная труба 3 снабжена манометром 22. Обсадная колонна 1 соединена с ПЗП и пластом 23 через перфорационные отверстия 24. Вращатель потока 25 обеспечивает вращение падающего по НКТ потока жидкости для дополнительной очистки забоя.
Способ реализуется следующим образом. До нагнетания смеси воздуха и выхлопных газов в межтрубное пространство 14 выполняют кислотную обработку (схема кислотной обработки на чертежах не показана). Особенность кислотной обработки заключается в том, что для уменьшения скорости реагирования при солянокислотной обработке призабойной зоны пласта нагнетательных и добывающих скважин в кислоту добавляют ПАВ нефтенол ВВД, (0,4-1,0%), гидрофобизатор ИВВ-1 (0,1-0,5%), при этом соляная кислота концентрацией - 12,0-24,0 мас.% - 98,5-99,5%. Это позволяет согласовать во времени процесс химического воздействия и депрессионной очистки ПЗП и исключить вторичное загрязнение ПЗП.
После кислотной обработки ПЗП установкой 13 в межтрубном пространстве 14 создают газовую подушку из смеси воздуха и выхлопных газов давлением 8-10 МПа. Смесь воздуха и выхлопных газов получают при включении двигателя внутреннего сгорания (на чертеже не показано) установки 13, выхлопные газы при этом проходят через охладитель 15, расходомер 16 и эжектор 17, в последнем образуется вакуум, вызывающий приток воздуха через расходомер 19. Зная расход выхлопных газов и требуемое соотношение воздуха и газов, при помощи задвижки 18 устанавливают допустимый расход воздуха. При соотношении расходов воздуха и смеси газов 2:3 и менее содержание кислорода в смеси не превышает 8,4% и смесь является безопасной по условиям воспламенения углеводородной среды. При нагнетании смеси газов задвижки 6, 7 и 9 открыты, а задвижки 4, 5 и 8 закрыты. Вытесняемую смесью воздуха и выхлопных газов жидкость из межтрубного пространства 14 по НКТ через задвижку 9 подают в емкость или амбар (на чертеже не показано). После повышения давления смеси воздуха и выхлопных газов в межтрубном пространстве 14 до требуемой величины (например, до 10 МПа) задвижку 6 закрывают, а установку 13 переводят после открытия задвижки 5 на насосный режим, т.е. нагнетание жидкости в затрубное пространство. Объем продавочной жидкости Vпж определяется по предложенной формуле. Так, при Рго=10 МПа, Нкз=50 м, d1=130 мм и d2=73 мм, Vпж=8,6 м3. При этом задвижки 4, 6 и 8 закрыты, а 5 и 9 открыты. Столько же жидкости (а именно - 8,6 м3) вытесняется из НКТ.
После этого сбрасывают жидкость из затрубного пространства 14 через трубопровод 10 в резервуар (на чертеже не показано). Задвижкой 7 регулируют скорость падения давления в пределах 2-2,5 МПа/ч. Изменение давления контролируют манометром 22. При этом задвижка 4 открыта, а задвижки 5, 6, 8 и 9 закрыты.
Излив смеси воздуха и выхлопных газов проводится постепенно со скоростью падения давления в пределах 2-2,5 МПа/ч. Регулирование осуществляется задвижкой 4. При этом обеспечивается плавность увеличения депрессии на пласт 23 и падения давления в ПЗП. По мере сброса воздуха скважина наполняется продуктами загрязнения, отходами химической реакции и ПЗП очищается пластовой жидкостью.
После разрежения межтрубного пространства до атмосферного давления производят дополнительное дренирование пласта 23 и очистку забоя: открывают задвижку 9 и столб жидкости в НКТ 2 падает на забой скважины. Импульсное воздействие, возникающее в результате падения жидкости из НКТ на забой, приводит к раскрытию старых и образованию новых микротрещин, разрушению отложений на перфорационных отверстиях 24 обсадной колонны 1 без нарушения технического состояния скважины. Вращающийся поток увлекает за собой шлам из перфорационных отверстий.
Сразу после выполнения последней операции приступают к повторению всех операций, т.е. выполнению второго цикла. Циклы повторяют 3-4 раза. При появлении нефти ее направляют в коллектор путем открытия задвижки 8. Работы прекращают, если давление нагнетания смеси газов не превышает 5 МПа.
Пример 1. Определение объема продавочной жидкости.
Исходные данные: глубина спуска НКТ в скважину Ннкт=1600 м, уровень жидкости в затрубном пространстве Нж=0 м, конечное давление газовой подушки Рго=10 МПа, гидростатический коэффициент противодействия продавливанию жидкости К=100 м/МПа, высота межтрубного пространства, необходимая для критического запаса Нкз=50 м, внутренний диаметр обсадной колонны d1=130 мм, наружный диаметр НКТ d2=73 мм. Высота газовой подушки равна Нго=100· 10=1000 м. Объем продавочной жидкости равен
Vпж=0,785· (1302-732)· (1600-1000-50)· 10-6=5 м3
Объемы продавочной жидкости для возможных параметров технологического процесса приведены в таблице 1.
Результаты расчетов объема продавочной жидкости для разных скважин
Пример 2. При проведении солянокислотных обработок скважин на месторождениях Западной Сибири коэффициент успешности составляет, в среднем, 51%. Коэффициент успешности депрессионной обработки в этих же условиях не превышает 71%. При проведении на опытных участках совместной солянокислотной и депрессионной обработки по заявленному способу коэффициент успешности возрастает, в среднем, до 80%.
Таким образом, проведение предварительной кислотной обработки, использование взрыво- и пожаробезопасной смеси газов в условиях углеводородных сред, закачка в затрубное пространство допустимого объема жидкости позволяют существенно (в 1,5-2,0 раза) повысить эффективность очистки ПЗП, увеличить на 10-20% коэффициент успешности обработок, уменьшить опасность аварии при реализации способа.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОБРАБОТКИ ИМПУЛЬСНЫМ ВОЗДЕЙСТВИЕМ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ | 2006 |
|
RU2310059C1 |
ТЕРМОБАРОХИМИЧЕСКИЙ СПОСОБ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ ПЛАСТА | 2001 |
|
RU2208143C2 |
Способ освоения нефтяных скважин | 1989 |
|
SU1682540A1 |
СПОСОБ ОСВОЕНИЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН | 2012 |
|
RU2527419C2 |
СПОСОБ ОЧИСТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА НАГНЕТАТЕЛЬНОЙ СКВАЖИНЫ | 2013 |
|
RU2537430C1 |
СИСТЕМА И СПОСОБ ВОССТАНОВЛЕНИЯ ПРОДУКТИВНОСТИ СКВАЖИНЫ И ДОБЫЧИ НЕФТИ НАСОСНЫМ СПОСОБОМ, В ТОМ ЧИСЛЕ ПОСЛЕ ГЛУШЕНИЯ | 2003 |
|
RU2238400C1 |
СПОСОБ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ ПЛАСТА | 1994 |
|
RU2085720C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ И НАГНЕТАНИЯ ГЕТЕРОГЕННЫХ СМЕСЕЙ В ПЛАСТ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2389869C1 |
Способ удаления конденсата или жидкости глушения из заглушенной газовой скважины, способ эксплуатации газовой скважины и профилактики ее "самоглушения" и забойное устройство для их осуществления | 2022 |
|
RU2789535C1 |
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНЫХ ЗОН НЕФТЯНЫХ СКВАЖИН | 2001 |
|
RU2197609C2 |
Изобретение относится к нефтяной промышленности и может быть использовано для восстановления продуктивности добывающих скважин и приемистости нагнетательных скважин, и освоения скважин. При осуществлении способа создают газовую подушку нагнетанием газа в межтрубное пространство. Далее нагнетают продавочную жидкость с вытеснением жидкости из межтрубного пространства по колонне насосно-компрессорных труб (НКТ) в емкость или амбар, сбрасывают давление из межтрубного пространства до атмосферного и воздействуют гидравлическим ударом на забой скважины вращающимся потоком жидкости из НКТ. Подушка создается установкой для нагнетания продавочной жидкости и газов. В качестве газа используют смесь воздуха и выхлопных газов в соотношении не более 2:3. Давление подушки обеспечивает избежание попадания газа в НКТ. Объем продавочной жидкости определяют по формуле: Vпж=0,785·(d
Vпж=0,785(d
где d1 - внутренний диаметр обсадной колонны, мм;
d2 - наружный диаметр насосно-компрессорных труб (НКТ), мм;
ННКТ - глубина спуска НКТ в скважину, м;
Нго - высота газовой подушки в межтрубном пространстве, м;
Нго=КPго,
К - гидростатический коэффициент противодействия продавливанию жидкости и газа, К=100 м/МПа;
Pго – конечное давление газовой подушки, МПа;
Нкз – высота межтрубного пространства, необходимая для критического запаса при продавливании газа жидкостью (Нкз≥50 м).
Способ освоения нефтяных скважин | 1989 |
|
SU1682540A1 |
Способ освоения скважин | 1981 |
|
SU1030538A1 |
Способ освоения нефтяных скважин | 1989 |
|
SU1682540A1 |
Способ освоения скважин | 1991 |
|
SU1776301A3 |
СПОСОБ ОЧИСТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА | 1989 |
|
SU1835136A3 |
СПОСОБ ОЧИСТКИ СКВАЖИНЫ | 1995 |
|
RU2061174C1 |
ОСВОЕНИЕ СКВАЖИН С ИСПОЛЬЗОВАНИЕМ ВЫХЛОПНЫХ ГАЗОВ ДИЗЕЛЬ-МОТОРОВ | 1994 |
|
RU2083812C1 |
US 3743017 A, 03.07.1973. |
Авторы
Даты
2005-02-20—Публикация
2003-08-21—Подача