Изобретение относится к способам измерения дебита нефтяных скважин и может быть использовано в информационно-измерительных системах объектов добычи, транспорта, подготовки нефти, газа и воды.
Известен способ [1] замера производительности скважин путем измерения среднего значения расхода за адекватно выбранное время в течение фиксированного интервала времени, а именно на стадии адаптации определяют величину относительного изменения производительности скважин и задают необходимое время измерения. На стадии измерения определяют объем жидкости, прошедшей через измеритель в течение времени, определенного на стадии адаптации. Однако отсюда следует, что объем данных, полученный за установленное заранее время адаптации, может быть недостаточным для прогнозирования требуемой длительности измерения, и величина полученного значения производительности может оказаться недостоверной.
Известен также способ [2] измерения дебита скважин, заключающийся в измерении количества жидкости, прошедшей через измеритель за фиксированный интервал времени с пересчетом в суточную производительность, при этом оптимальное время измерения выбирают по гибкой программе на основании сравнения времени прохождения фиксированного количества жидкости в контрольной стадии измерения с уставками эталонного времени, а в стадии основного измерения дебит определяют по отсчитанному измерителем объему жидкости за время, определенное на стадии контроля.
Измерение в данном способе осуществляют в три этапа. На первом этапе измеряют контрольное время прохождения фиксированного объема (веса) жидкости через измеритель. На втором этапе сравнивают результаты контрольного измерения с результатами предыдущего измерения дебита этой же скважины и с эталонными уставками времени. На основании этого сравнения выбирают необходимое время измерения при заданной постоянной ошибке усреднения и контрольный объем. На третьем этапе с помощью измерителя производят отсчет объема (веса) жидкости в течение времени измерения, определенного на втором этапе, и подсчитывают суточную производительность скважины.
Данный способ, во-первых, достаточно сложен в реализации, а во-вторых, при применении его на автоматизированных групповых установках типа “Спутник” затрачивается значительное время на измерение дебита одной скважины, тем более суммарное время измерения дебита группы скважин.
Наиболее близким техническим решением, то есть прототипом, признан способ [3] замера производительности скважин путем измерения среднего значения расхода за адекватно выбранное время, в котором с целью повышения точности измерения за счет установления времени контроля в процессе измерения, определяют средние значения расхода и их средние квадратические отклонения на дискретно увеличивающихся интервалах времени, сравнивают каждое последующее значение с предыдущим и заканчивают измерение по достижению разности двух смежных средних квадратических отклонений заданной уставки.
При таком способе к оптимальному времени измерения дебита каждой скважины из группы скважин приходят при помощи итераций (метода последовательных приближений), начиная измерение дебита с заведомо наименьшего времени. По результатам ряда измерений вычисляется среднее значение измеряемой величины и его среднее квадратическое отклонение ( и σ 1). Полученное значение σ i сравнивается с заданным значением среднего квадратического отклонения результирующего среднего арифметического σ у. При σ y≥σ 1 измерение по скважине прекращается и подается сигнал на подключение очередной скважины. При σ у<σ 1 увеличивается время измерения и вновь вычисляется среднее арифметическое измеряемой величины и его математическое ожидание σ 2. Далее, после достаточно сложных процедур, вычисляется разность средних квадратических отклонений, вырабатывается новый критерий (здесь не приводится), и система снова имеет два исхода: или измерение заканчивается, или добавляется (увеличивается) время измерения. При увеличении времени измерения определяются новые значения и σ 3 и только при , где n - общее количество интервалов Δ tn измерения, входящих в заданную продолжительность измерения, равную tn=Δ t+nΔ tn, выдается полученное значение xn.
Сложность подобного способа измерения очевидна, а выбранный критерий будет эффективен при достаточно большом числе измерений на каждом шаге итераций. При значительном числе скважин, подключенных для поочередного измерения дебита i-той скважины, такой способ обуславливает неоправданно длительное время измерения дебита группы скважин. А если учесть, что для получения истинного хi потребуется ряд измерений для определения суточного дебита каждой скважины, то применение данного способа вряд ли обосновано.
Использование в качестве критерия численного значения среднего квадратического отклонения σ () среднего расхода является неоправданным, поскольку в реальных условиях σ () нестабильно и на процедуру поиска оптимального времени измерения будет накладываться дополнительная неопределенность, вызванная непредсказуемым изменением σ ().
Кроме того, поиск оптимального времени измерения должен быть увязан с периодом опроса скважины.
Таким образом, цель заявляемого способа заключается в обеспечении известному способу измерения дебита группы нефтяных скважин более высоких потребительских свойств путем придания адаптивности при выборе периода опроса каждой скважины из группы скважин.
Требуемый технический результат в заявляемом способе, согласно способу-прототипу, заключающемуся в измерении среднего значения расхода за адекватно выбранное время по каждой конкретной скважине с поочередным по заданной программе подключением скважин к измерителю, последующим пересчетом дебита в суточную производительность достигается тем, что выбирают по одному из наиболее нестабильных параметров потока самую динамичную скважину из группы, задают и заносят в память вычислителя, например, промышленного контроллера численное значение относительной средней квадратической погрешности δ 3 среднего значения расхода m(q), определяют период опроса этой скважины, опрашивают с этим же периодом остальные скважины группы, корректируют период опроса каждой i-той из них путем сравнения текущей относительной средней квадратической погрешности δ mi среднего значения расхода qi с ранее заданной δ 3 из условий:
δ mi≥δ 3(1+K); δ mi≤δ 3(1-К),
где К - коэффициент ограничения диапазона изменения δ mi, регламентирующий необходимость в корректировке периода опроса i-той скважины в сторону уменьшения или увеличения.
Дополнительным отличием заявляемого способа измерения дебита группы нефтяных скважин является то, что при совпадении моментов переключения на измерение дебита двух и более скважин из группы, очередность их опроса устанавливают по убыванию производительности этих скважин.
Отметим, что из общеизвестных источников информации (в том числе и патентных) не выявлены способы, идентичные предлагаемому, и/или способы с совокупностью существенных признаков (в том числе и отличительных), эквивалентных совокупности существенных признаков предлагаемого технического решения и проявляющих такие же новые свойства, позволяющие достичь требуемого технического результата при реализации. Это позволяет утверждать, что предлагаемое техническое решение ново, неочевидно, промышленно применимо и соответствует “критериям” изобретения.
Приведем пример конкретной реализации способа.
Имеется 8 скважин со следующими численными значениями их среднесуточных расходов:
15, 30, 40, 25, 20, 60, 70 и 75 м3 в сутки.
По одному из параметров, характеризующих динамику работы скважин, например, по давлению (или по расходу), определяем самую динамичную скважину с помощью известных промышленных шумомеров или анализаторов спектра, датчики которых можно установить на устье скважин (непосредственно в поток или на теле трубы). Определяется период опроса этой скважины по одному из известных способов, например, по среднему числу пересечений расходом линии нулевого уровня, которое функционально связано с периодом опроса случайной функции или с интервалом корреляции [4]. Пусть период опроса t0=2 ч.
Задаются относительной средней квадратической погрешностью δ 3 среднего расхода по скважине
где σ (mq) - средняя квадратическая погрешность среднего расхода mq; σ q - среднее квадратическое отклонение процесса (расхода).
Численное значение относительной погрешности более устойчиво (нормировано), чем σ (mq), поскольку учитывается среднее квадратическое отклонение расхода.
С периодом опроса t0=2 ч опрашиваются все скважины, по истечении 24 часов по каждой скважине будет набрано 10 отсчетов. По мере набора отсчетов по каждой скважине определяется текущее значение δ mi, определяемое по формуле
Если численное значение δ mi будет больше заданной δ 3, которая гарантирует желаемую точность получения среднесуточного расхода, производится перерасчет t0 в сторону его уменьшения и наоборот (в соответствии с условиями δ mi≥δ 3(1+К); δ mi≤δ 3(1-К)). На практике коэффициент К задают равным 0,1, то есть неравенство работает с чувствительностью не хуже 10% от заданной погрешности.
Пусть в вычислитель измерителя производительности скважины (контроллер) занесено значение δ 3=5%. Тогда неравенства с учетом численного значения К будут выглядеть следующим образом:
δ mi≥5,5; δ mi≤4,5.
Пусть по прошествии суток получены следующие значения текущей (фактической) по каждой скважине относительной средней квадратической погрешности δ mi:
4,0; 5,0; 6,0; 6,0; 2,5; 3,0; 4,5; 4,0.
Следовательно, период опроса скважин с расходами 40 и 25 м3/сутки должен быть уменьшен на Δ t, т.е. увеличена частота опроса, причем на измерение расхода первой подключается скважина с расходом 40 м3/сутки.
Период опроса скважины с расходом 70 м3/сутки должен быть увеличен на время Δ t, которое задается в виде уставки в контроллере (вычислителе). Все операции совершает контроллер автоматизированной установки.
Таким образом, совокупность существенных признаков (в том числе и отличительных) заявляемого способа измерения дебита группы нефтяных скважин обеспечивает достижение требуемого технического результата, соответствует критериям “изобретения” и подлежит защите охранным документом (патентом) РФ в соответствии с просьбой заявителя.
Источники информации
1. СССР, а.с. №446640, кл. Е 21 В 47/10, 1972.
2. СССР, а.с. №751977, кл. Е 21 В 47/10, 1976.
3. СССР, а.с. №439598, кл. Е 21 В 47/10, 1971, прототип.
4. Романенко А.Ф., Сергеев Г.А. Вопросы прикладного анализа случайных процессов. - М.: Советское радио, 1968. - 256 с.
Изобретение относится к контролю за состоянием разработки нефтяного месторождения путем контроля работы скважин и учета суммарной добычи по результатам измерения их суточного дебита. Техническим результатом изобретения является обеспечение адаптивности при выборе периода опроса каждой скважины из группы скважин. Для этого измерение дебита группы нефтяных скважин осуществляется путем измерения среднего значения расхода за адекватно выбранное время по каждой конкретной скважине группы с поочередным - по заданной программе - подключением скважин к измерителю и последующим пересчетом дебита в суточную производительность. При этом выбирают по одному из наиболее нестабильных параметров потока самую динамичную скважину из группы. Задают и заносят в память вычислителя, например промышленного контроллера, численное значение относительной средней квадратической погрешности δ 3 среднего значения расхода m(q). Определяют период опроса этой скважины. Опрашивают с этим же периодом остальные скважины группы. Корректируют период опроса каждой i-той из них путем сравнения текущей – фактической - относительной средней квадратической погрешности δ mi среднего значения расхода qi с ранее заданной δ 3 из условий: δ mi≥δ 3(1+К); δ mi≤δ 3(1-К), где К - коэффициент ограничения диапазона изменения δ mi, регламентирующий необходимость в корректировке периода опроса i-той скважины в сторону уменьшения или увеличения. При совпадении моментов переключения на измерение дебита двух и более скважин из группы, очередность их опроса устанавливают по убыванию производительности этих скважин. 1 з.п. ф-лы.
δ mi≥δ 3(1+К); δ mi≤δ 3(1-К),
где К - коэффициент ограничения диапазона изменения δ mi, регламентирующий необходимость в корректировке периода опроса i-й скважины в сторону уменьшения или увеличения.
Адаптивный способ измерения производительности скважин | 1971 |
|
SU439598A1 |
Способ замера производительности скважин | 1976 |
|
SU751977A1 |
Адаптивный способ замера производительности скважин | 1972 |
|
SU446640A1 |
Способ определения дебитов нефтяных скважин | 1988 |
|
SU1629519A1 |
Групповая замерная установка | 1987 |
|
SU1452960A1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ДЕБИТА СКВАЖИНЫ | 1988 |
|
SU1832833A1 |
US 5535632 A, 16.07.1996 | |||
Установка для измерения параметров водовоздушной смеси в системах кондиционирования | 1981 |
|
SU1020713A1 |
Авторы
Даты
2005-02-27—Публикация
2003-07-14—Подача