Изобретения относятся к расходоизмерительной технике и могут быть использованы для измерения расхода текучих сред в трубопроводах.
Известно устройство для измерения скорости (расхода) потока жидкости [1], состоящее из обтекаемого тела, укрепленного на конце соединительного штока, который помещен в защитную трубку. Другой конец соединительного штока закреплен в корпусе измерителя. Устройство для измерения скорости (расхода) потока жидкости [1] реализует способ измерения скорости потока преобразованием пропорциональной ей силы, измеряемой с помощью укрепленных на соединительном штоке тензорезисторов.
Недостатком этого устройства, реализующего способ измерения скорости (расхода) жидкости потока, является зависимость результатов измерения от температуры. Кроме того, устройство для измерения скорости (расхода) потока жидкости не может быть использовано для измерения массового расхода без существенной конструктивной доработки.
Известен также ряд других устройств, реализующих способ измерения скорости (расхода) потока жидкости (газа) с набеганием текучей среды на чувствительный упругий элемент, по перемещению которого судят о скорости (расходе) потока [2-4]. Главным недостатком этих устройств является их ограниченная функциональная возможность, а именно невозможность измерения массового расхода.
Наиболее близкими техническими решениями (прототипами) к заявляемому способу и устройству является устройство и реализуемый им способ [5] для измерения расхода жидкостей и газов.
Известное устройство-прототип содержит измерительный участок трубопровода, чувствительный элемент в виде эластичной упругой ферромагнитной пластины, стянутой пружинами в продольном направлении, и индукционный датчик.
Способ, реализуемый устройством-прототипом [5], заключается в измерении пропорциональной расходу частоты деформации упругой пластины от набегающего потока жидкости (газа).
Недостатком известных технических решений (способа и устройства) измерения расхода жидкости (газа) в трубопроводе является их ограниченная функциональная возможность, иначе - невозможность измерения массового расхода. Кроме того, в значительной степени на точность измерения расхода влияет температура текучей среды.
Таким образом, цель заявляемых объектов (иначе - требуемый технический результат) заключается в обеспечении известным техническим решениям более высоких потребительских свойств путем расширения функциональных возможностей, а именно обеспечение измерения массового расхода текучей среды в трубопроводе.
Требуемый технический результат в заявляемом способе согласно способу-прототипу, в котором в трубопровод консольно помещают упругий элемент с конструктивно заданной площадью сопротивления потоку, измеряют какой-либо параметр потока при воздействии его на этот упругий элемент и преобразовывают измеряемую величину этого параметра в единицы расхода текучей среды, достигается тем, что штатно уменьшают поперечное сечение S1 потока в трубопроводе до величины S2, в суженной этим поперечным сечением поток помещают - дополнительно - идентичный первому упругий элемент, в следящем режиме измеряют (контролируют) силы F1 и F2 сопротивления потоку на обоих упругих элементах, а также перепад Δ Р статических давлений P1 и Р2 на стенку трубопровода в местах установки упругих элементов, по величинам этих сил судят о плотности ρ текучей среды, ее скоростях V1 и V2 в местах установки упругих элементов и, соответственно, о динамической составляющей напора (давления) потока, а массовый расход Qm текучей среды определяют произведением V1 на S1 и на ρ :
Qm=V1S1ρ(или V2S2ρ),
где плотность текучей среды определяют по формуле:
в которой Δ Р - перепад статических давлений на стенку трубопровода в местах установок упругих элементов соответственно; Δ P1 - перепад давления (напора потока на первом упругом элементе); Δ Р2 - перепад давления (напора потока на втором (дополнительном) упругом элементе); χ - коэффициент, учитывающий неравномерность энергетического вклада от скоростей потока по сечению трубопровода, находящийся в диапазоне 1,05-1,15; Ктр - коэффициент трения внутренней поверхности измерительного участка трубопровода (размерность - м2/с2).
Как показывают стендовые и промышленные испытания заявляемого устройства и опыт эксплуатации прототипа-устройства, требуемый технический результат достигается тем, что устройство для осуществления способа измерения расхода текучих сред, содержащее измерительный участок трубопровода с двумя калиброванными поперечными сечениями, второе из которых штатно уменьшено относительно первого, датчики статических давлений текучей среды на стенку измерительного участка трубопровода в обоих его сечениях, а также упругий элемент с конструктивно заданной площадью лобового сопротивления потоку, консольно закрепленный в стенке внутри трубопровода на входе в измерительный участок, причем этот элемент снабжен силоизмерительным датчиком, а также вычислитель, соединенный с датчиками, снабжено вторым, дополнительным и идентичным первому, упругим элементом, установленным во втором калиброванном сечении измерительного участка трубопровода, при этом второй упругий элемент также снабжен силоизмерительным датчиком, а оба упругих элемента установлены в измерительном участке трубопровода в одной горизонтальной плоскости диаметрально противоположно друг другу.
Требуемый технический результат обеспечен наличием в совокупности существенных признаков (характеризующих предлагаемый способ и реализующее его устройство для измерения расхода жидкостей (газов) в трубопроводе) вышеуказанных отличительных признаков, а необнаружение в общедоступных источниках патентной и технической информации эквивалентных технических решений с теми же свойствами предполагает соответствие заявляемых объектов критерия изобретения.
На чертеже приведена принципиальная схема устройства, реализующего способ измерения расхода жидкости (газа) в трубопроводе.
Устройство состоит из измерительного участка 1 трубопровода с расширенным и суженным частями с калиброванными внутренними сечениями S1 и S2, в которых расположены датчики статических давлений 2 и 3, выходы которых соединены с вычислителем (контроллером) 4.
Кроме того, в сечениях S1 и S2 консольно укреплены упругие элементы в виде пластин 5 и 6 с расположенными на них датчиками усилий 7 и 8, воспринимающих изгибные перемещения пластин и соединенных с входом вычислителя 4 (контроллера).
Устройство работает следующим образом.
Движущийся в измерительном трубопроводе 1 поток текучей среды (жидкость, газ), набегая на упругие элементы 5 и 6, создает в них механические напряжения. Эти напряжения преобразуются в электрические сигналы с помощью датчиков усилий 7 и 8, выходы которых подаются на вход вычислителя (контроллера) 4.
Силы F1 и F2, сопротивления упругих элементов 5 и 6 потоку текучей среды определяются выражениями:
где ρ - плотность рабочей среды; V1, V2 - линейные скорости рабочей среды соответственно в сечениях S1 и S2 измерительного участка трубопровода; S3 и S4 - площади поверхности упругих элементов, воспринимающих напор потока. Для дальнейшего упрощения рассуждений принято, что S3=S4=S.
Алгоритм вычисления расхода сводится к следующим операциям.
Из формул (1) и (2) определяется динамическое давление (давление напора):
По известным статическим давлениям P1 и Р2 в исходной части измерительного трубопровода и в штатно суженной части (соответственно в сечениях S1 и S2) определяется статический перепад давления Δ Р:
Используя известный математический аппарат, выразим линейную скорость потока через Δ Р:
в то же время
Следовательно
Тогда
Из работы [6] известно, что:
где χ - коэффициент, учитывающий неравномерность энергетического вклада от скоростей потока по сечению трубопровода, находящийся в диапазоне 1,05-1,15.
Ктр - коэффициент трения внутренней поверхности измерительного участка трубопровода (размерность - м2/с2).
По известным Δ Р и ρ определяется линейная скорость движения потока (формулы 6 и 7) и соответственно объемный и массовый расходы (Qv и Qm):
QV1=QV2=V1·S1=V2·S2;
Qm1=Qm2=V1·S1·ρ=V2·S2·ρ.
Таким образом, предложенный способ и реализующее его устройство позволяют измерить расход текучей среды (жидкость, газ) без использования преобразователей расхода, используя для этого измерительный участок трубопровода с расширенной и суженной частями, два датчика статического давления, два консольно размещенных в трубопроводе упругих чувствительных элемента с размещенными на них датчиками усилий, воспринимающих их изгибные напряжения в материале упругого элемента и соединенных с входом вычислителя (контроллера).
Совокупность существенных признаков (в том числе и отличительных) заявляемого способа измерения расхода текучих сред и устройства для его осуществления обеспечивает достижение требуемого технического результата соответствует критериям “изобретения” и подлежит защите охранным документом (патентом) РФ в соответствии с просьбой заявителя.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Авторское свидетельство №284464, кл. G 01 P 5/02, 1970 г.
2. Патент США №3698245, кл. G 01 F 1/00, 1972 г.
3. Авторское свидетельство №754310, кл. G 01 P 3/36, G 01 P 5/02, 1980 г.
4. Авторское свидетельство №1037180, кл. G 01 P 5/00, 1982 г.
5. Авторское свидетельство №901823, кл. G 01 F 1/00, 1982 г. (прототип).
6. Журнал “Измерительная техника”, 1993г., №6.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАСХОДА ТЕКУЧИХ СРЕД | 2005 |
|
RU2293291C2 |
СПОСОБ КОНТРОЛЯ НАЛИЧИЯ ГАЗА В ПОТОКЕ ЖИДКОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2004 |
|
RU2280842C1 |
СПОСОБ ИЗМЕРЕНИЯ ПРОТЕКАЮЩЕЙ В ТРУБОПРОВОДЕ СРЕДЫ И ИЗМЕРИТЕЛЬНАЯ СИСТЕМА | 2006 |
|
RU2390733C2 |
СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ ПОТОКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2106639C1 |
ТЕНЗОМЕТРИЧЕСКИЙ РАСХОДОМЕР | 1992 |
|
RU2037796C1 |
Способ и устройство для определения массового расхода газа | 2021 |
|
RU2769093C1 |
МАССОВЫЙ РАСХОДОМЕР-ПЛОТНОМЕР ЖИДКОСТИ, ПОДАВАЕМОЙ ЦЕНТРОБЕЖНЫМ ЭЛЕКТРОНАСОСОМ | 1996 |
|
RU2182697C2 |
СПОСОБ И УСТРОЙСТВО ИЗМЕРЕНИЯ РАСХОДА ГАЗОЖИДКОСТНОГО ПОТОКА | 2004 |
|
RU2286546C2 |
ВСТРОЕННЫЕ В ТРУБОПРОВОД ИЗМЕРИТЕЛЬНЫЕ УСТРОЙСТВА И СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ ВО ВСТРОЕННЫХ В ТРУБОПРОВОД ИЗМЕРИТЕЛЬНЫХ УСТРОЙСТВАХ | 2006 |
|
RU2369842C2 |
СПОСОБ ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК ЖИДКИХ СРЕД, А ИМЕННО ОБЪЕМНОГО РАСХОДА И ВЯЗКОСТИ, И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2008 |
|
RU2379632C1 |
Заявленное изобретение относится к области расходометрии в трубопроводах, преимущественно жидкости и/или газа. Способ состоит в измерении в специально организованном измерительном участке трубопровода (ИУТ) с имеющим штатное сужение каналом перепада статических давлений, перепадов давления на двух упругих элементах (УЭ), установленных в разных сечениях ИУТ, плотности текучей среды, линейных скоростей потока и объемного и массового расхода. Устройство для измерения текучих сред содержит измерительный участок 1 трубопровода, выполненный в виде вставки в него (например, на фланцевых соединениях). Содержит два датчика для измерения статических давлений потока на стенку, второй из датчиков установлен на стенке штатного сужения канала ИУТ. В ИУТ установлены также два УЭ, консольно выдающиеся в поток для восприятия скоростного напора потока, снабженные - каждый - датчиком для измерения изгибных напряжений на УЭ. Все датчики соединены с вычислителем. 2 н.п. ф-лы, 1 ил.
Qm=V1S1ρ(или V2S2ρ),
где плотность текучей среды определяют по формуле:
в которой Δ Р - перепад статических давлений на стенку трубопровода в местах установок, упругих элементов соответственно; Δ P1 - перепад давления (напора потока на первом упругом элементе); Δ Р2 - перепад давления (напора потока на втором (дополнительном) упругом элементе); χ - коэффициент, учитывающий неравномерность энергетического вклада от скоростей потока по сечению трубопровода, находящийся в диапазоне 1,05-1,15; Ктр - коэффициент трения внутренней поверхности измерительного участка трубопровода (размерность - м2/с2).
Расходомер | 1980 |
|
SU901823A1 |
Устройство для измерения скорости потока | 1982 |
|
SU1037180A1 |
ВИХРЕВОЙ РАСХОДОМЕР (ВАРИАНТЫ) | 2002 |
|
RU2219501C2 |
US 3698245 А, 17.10.1972. |
Авторы
Даты
2005-02-27—Публикация
2003-09-01—Подача