Изобретение относится к области двигателестроения и может быть использовано для создания тяги на летательных аппаратах.
Известен пульсирующий детонационный двигатель, содержащий камеру сгорания, реактор, детонационный резонатор и воздушный канал второго контура [1].
В известном устройстве газогенератор, состоящий из камеры сгорания и реактора, и детонационный резонатор расположены в едином корпусе с образованием кольцевого канала, являющегося каналом второго контура. Такая конструкция двигателя не позволяет использовать его в качестве модели для проведения параметрических исследований с варьированием термодинамических параметров, конфигурации и размеров элементов ее проточной части при испытаниях.
Задачей, на решение которой направлено заявленное изобретение, является создание конструкции детонационного двигателя, позволяющей использовать его в качестве модели для проведения различного вида исследований, путем обеспечения возможности варьирования различными схемами составных узлов двигателя.
Технический результат достигается тем, что в пульсирующем детонационном двигателе, содержащем камеру сгорания, реактор, детонационный резонатор и воздушный канал второго контура, камера сгорания, реактор и детонационный резонатор выполнены в виде отдельных модулей, последовательно соединенных между собой с возможностью замены, а воздушный канал второго контура размещен внутри камеры сгорания и реактора вдоль продольной оси двигателя.
Признаки, отличающие заявленное изобретение от известного [1] и характеризующие выполнение камеры сгорания, реактора и детонационного резонатора в виде отдельных модулей, последовательно соединенных между собой с возможностью замены, позволяют при проведении испытаний без полного разбора двигателя быстро производить замену одного или нескольких его составных узлов, а размещение канала второго контура внутри камеры сгорания и реактора вдоль продольной оси двигателя обеспечивает достоверность результатов, получаемых в ходе исследований, позволяя использовать этот двигатель в качестве модели для проведения различного вида исследований, в том числе и с варьированием термодинамических параметров.
Изобретение поясняется чертежом, где представлен общий вид заявленного устройства.
Пульсирующий детонационный двигатель содержит выполненные в виде отдельных модулей камеру сгорания 1, реактор 2 и детонационный резонатор 3. Коаксиально цилиндрическому корпусу камеры сгорания 1 размещен цилиндрический канал 4, образующий вместе с корпусом камеры сгорания 1 кольцевой канал 5, в котором размещены горелочные устройства 6. Корпус камеры сгорания 1 соединен с корпусом реактора 2 через конфузор 7 фланцевыми соединениями. Реактор 2 представляет собой кольцевой канал 8, образованный корпусом реактора 2 и воздушным цилиндрическим каналом 4. Корпус реактора 2 соединен с корпусом резонатора 3 также фланцевым соединением.
Первый (“горячий”) контур двигателя представляет собой кольцевой канал, образованный соответствующими каналами камеры сгорания 1 и реактора 2, и предназначен для подачи пирогаза в детонационный резонатор 3. Второй (“холодный”) контур представляет цилиндрический канал 4 и предназначен для подачи воздуха в детонационный резонатор 3.
Перпендикулярно продольной оси двигателя расположены патрубки 9, 10 подвода воздуха к камере сгорания 1 и в канал 4 второго контура, что позволяет исключить влияние входного импульса на тягу устройства в целом.
Детонационный резонатор 3 состоит из кольцевого канала, в котором последовательно расположены смеситель 11, кольцевое сопло 12 и собственно резонаторная полость 13 с “тяговой стенкой” 14.
Работа устройства осуществляется следующим образом.
Сжатый воздух (с давлением, преимущественно превышающим 2 кг/см2) через штуцер 9 подается в камеру сгорания 1. Туда же через топливный коллектор 15 подается горючее, которое полностью сжигается, обеспечивая тем самым высокую температуру потока - источника предварительного нагрева.
Высокотемпературный поток продуктов сгорания из камеры сгорания 1 поступает в реактор 2, куда дополнительно подается горючее через топливный коллектор 16, причем последний может быть установлен в нескольких позициях по длине реактора 2. За счет высокой температуры потока - источника предварительного подогрева происходит пиролиз дополнительно подаваемого горючего, сопровождающийся распадом исходных молекул с образованием более высокореакционноспособных частиц.
На вход детонационного резонатора 3 подаются продукты пиролиза, а также воздух из канала 4 второго (“холодного”) контура. В резонаторе 3 реализуются периодические детонационнные процессы, способствующие преобразованию внутренней энергии рабочего тела в механическую работу силы тяги при постоянном объеме V=const. Выхлоп продуктов детонации происходит непосредственно в атмосферу из резонаторной полости 13. Действие резонатора 3 основано на известном эффекте Гартмана-Шпренгера и заключается в возникновении высокочастотных с большой амплитудой пульсационных режимов по давлению, сопровождающихся ростом температуры торможения внутри резонаторной полости 13.
Благодаря фланцевому соединению между собой камеры сгорания 1, реактора 2 и резонатора 3, каждый из этих элементов двигателя можно поменять на соответствующий элемент с измененной конструкцией. Это позволяет, например, проводить испытания различных конструкций горелочных устройств для различного вида топлива; оптимизировать процессы сжигания топлив от легких до тяжелых углеводородов, например дизельного топлива; изучать продукты пиролиза углеводородных топлив и оптимальные режимы их получения с целью использования их в детонационных устройствах; проводить испытания различных конструкций детонационных устройств с целью получения тяги с высокими удельными импульсами. Появляется возможность оптимизировать схемы смешения продуктов пиролиза и окислителя воздуха перед детонационным резонатором.
Изобретение позволяет использовать детонационный двигатель в качестве модели для проведения параметрических исследований с варьированием термодинамических параметров, конфигурации и размеров элементов ее проточной части при испытаниях.
Источник информации
1. Патент Российской Федерации №2034996, МПК 5 F 02 К 3/08, 1993 г.
название | год | авторы | номер документа |
---|---|---|---|
Способ форсирования двухконтурного эжекторного пульсирующего воздушно-реактивного двигателя и форсированный двухконтурный эжекторный пульсирующий воздушно-реактивный двигатель | 2020 |
|
RU2765672C1 |
ПУЛЬСИРУЮЩИЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ | 2010 |
|
RU2435059C1 |
Способ функционирования детонационного двигателя и устройство для его реализации | 2019 |
|
RU2737322C2 |
Способ форсирования двухконтурного эжекторного пульсирующего воздушно-реактивного двигателя и форсированный двухконтурный эжекторный пульсирующий воздушно-реактивный двигатель | 2021 |
|
RU2760339C1 |
ГИПЕРЗВУКОВОЙ, ВОЗДУШНО РЕАКТИВНЫЙ ДВИГАТЕЛЬ С ДЕТОНАЦИОННО-ПУЛЬСИРУЮЩЕЙ КАМЕРОЙ СГОРАНИЯ, С СОВМЕЩЕНИЕМ ГИПЕРЗВУКОВОГО РЕАКТИВНОГО ПОТОКА СО СВЕРХЗВУКОВЫМ ПРЯМОТОЧНЫМ "ОДИН В ДРУГОМ" | 2012 |
|
RU2524591C1 |
СПОСОБ РАБОТЫ ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ С ТЯГОВЫМИ МОДУЛЯМИ ПУЛЬСИРУЮЩЕГО ДЕТОНАЦИОННОГО СГОРАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2008 |
|
RU2375601C2 |
СПОСОБ ПОЛУЧЕНИЯ ТЯГИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2034996C1 |
ПУЛЬСИРУЮЩИЙ ДЕТОНАЦИОННЫЙ ДВИГАТЕЛЬ | 2012 |
|
RU2490498C1 |
ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ НА ТВЕРДОМ ТОПЛИВЕ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ | 2021 |
|
RU2796043C2 |
СПОСОБ ПРОИЗВОДСТВА ВЫСТРЕЛА ИЗ БАЛЛИСТИЧЕСКОЙ УСТАНОВКИ С ВЫСОКОЧАСТОТНЫМ РЕЗОНАТОРОМ | 2023 |
|
RU2825585C1 |
Пульсирующий детонационный двигатель содержит выполненные в виде отдельных модулей камеру сгорания, реактор и детонационный резонатор, соединенные между собой с возможностью замены. Внутри камеры сгорания и реактора, вдоль продольной оси двигателя, размещен воздушный канал второго контура. Изобретение позволяет использовать детонационный двигатель в качестве модели для проведения различного вида исследований, путем обеспечения возможности варьирования различными схемами составных узлов двигателя. 1 ил.
Пульсирующий детонационный двигатель, содержащий камеру сгорания, реактор, детонационный резонатор и воздушный канал второго контура, отличающийся тем, что камера сгорания, реактор и детонационный резонатор выполнены в виде отдельных модулей, последовательно соединенных между собой с возможностью замены, а воздушный канал второго контура размещен внутри камеры сгорания и реактора вдоль продольной оси двигателя.
АПАНАСЕНКО А.И | |||
Монтаж, испытания и эксплуатация газоперекачивающих агрегатов в блочно-контейнерном исполнении | |||
- Л.: Недра, 1991, с.17 | |||
МНОГОЛУЧЕВОЙ СВЧ-ПРИБОР О-ТИПА | 1991 |
|
RU2086031C1 |
US 6003302 A, 21.02.1999 | |||
КАМЕРА ПУЛЬСИРУЮЩЕГО ДВИГАТЕЛЯ ДЕТОНАЦИОННОГО ГОРЕНИЯ | 1994 |
|
RU2084675C1 |
СПОСОБ ПОЛУЧЕНИЯ ТЯГИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2179254C2 |
US 6584765 B1, 01.07.2003 | |||
US 3777488 A, 11.12.1973 | |||
US 5557926 A, 24.09.1996. |
Авторы
Даты
2005-03-27—Публикация
2003-08-05—Подача