БОЕВАЯ ЧАСТЬ ТАНДЕМНОГО ТИПА Российский патент 2005 года по МПК F42B12/16 F42B12/20 

Описание патента на изобретение RU2251069C1

Изобретение относится к оборонной технике и может быть использовано для создания боевых частей высокоточных управляемых ракет малого и среднего калибра, предназначенных для поражения легкобронированной и небронированной техники, а также расположенной на местности и в укрытиях живой силы противника.

Известны осколочно-фугасные боевые части (ОФБЧ) управляемых ракет и снарядов класса “земля-земля” или “воздух-земля”, например, по патенту РФ №2018779, МКИ5 F 42 В 12/32, опубл. 30.08.94, бюл.№16.

ОФБЧ по указанному патенту содержит разрывной заряд с осколочной оболочкой и взрыватель, включающий в себя датчик цели контактного действия и предохранительно-исполнительный механизм, связанные между собой электроцепью. Эта БЧ осуществляет поражение целей за счет совместного осколочно-фугасного действия и предназначена для борьбы с такими целями поля боя, как легкобронированная или небронированная техника, самолеты и вертолеты на стоянках, живая сила на открытой местности и в искусственных или естественных укрытиях.

Применяемые в этих ОФБЧ взрыватели контактного действия обычно имеют два режима срабатывания - “мгновенное” или “замедленное”. При этом установка взрывателя на “мгновенное” или “замедленное” срабатывание производится путем перекоммутации электроцепей взрывателя перед пуском ракеты (снаряда) по команде оператора. Установка на “мгновенное” действие производится для обеспечения срабатывания БЧ на поверхности цели при стрельбе по легкобронированной или небронированной технике, самолетам и вертолетам на стоянках, живой силе, расположенной на открытой местности. При стрельбе по живой силе, расположенной в естественных или искусственных укрытиях, таких как долговременные защитные оборонительные сооружения (ДЗОС), траншеи или окопы, когда для увеличения эффективности действия требуется увеличить объем разрушений защитных толщей укрытия, разрывной заряд необходимо заглубить в грунт, защищающий укрытие от осколочно-фугасного действия БЧ. Для этого производится установка взрывателя на “замедленное” действие.

Для минимизации времени срабатывания взрывателя в режиме “мгновенного” действия контактные датчики цели обычно размещают в головной части переднего отсека ракеты (снаряда). Это позволяет обеспечить максимально быстрое получение информации о подходе ракеты к цели. Однако даже в этом случае время срабатывания взрывательного устройства от момента касания головной частью ракеты (снаряда) поверхности цели до подрыва разрывного заряда составляет несколько сот микросекунд, куда входит время, необходимое на срабатывание контактного датчика, и время, на срабатывание узлов предохранительно-исполнительного механизма. При работе по мягким грунтам при скорости подхода к цели ракеты (снаряда) порядка нескольких сотен метров в секунду за время “мгновенного” срабатывания взрывателя ракета преодолевает расстояние порядка своего калибра. Это приводит к срабатыванию разрывного заряда, уже частично заглубленного в грунт. Грунт экранирует значительную часть разлетающейся осколочной оболочки разрывного заряда, уменьшая эффективность осколочного действия по целям, расположенным на поверхности, и предотвращая поражение целей, укрытых в складках местности. Кроме того, размещение контактного датчика цели в головной части переднего отсека ракеты приводит к дополнительной экранировке части передней полусферы датчиком и элементами конструкции его крепления в отсеке и снижению осколочного действия в этом направлении.

При работе в режиме “мгновенного” срабатывания по целям с прочным корпусом, таким, например, как легкобронированная техника, размещение контактного датчика в головной части переднего отсека ракеты приводит к срабатыванию разрывного заряда на удалении от поверхности цели, препятствуя тем самым максимально возможному приближению разрывного заряда к поверхности цели и снижая величину совместного осколочно-фугасного действия.

Кроме того, датчики цели контактного действия имеют ограничения по условиям срабатывания при малых углах подхода к поверхности цели. Так, например, известно взрывательное устройство 9Э277 (см., например, техническое описание и инструкцию по эксплуатации СЩI.300.042 ТО), содержащее предохранительно-исполнительный механизм и контактный датчик цели - изделие 9Э273 ПГ пьезоэлектрического типа. Конструкция и принцип действия этого датчика цели не позволяют ему обеспечивать надежное срабатывание при углах подхода к поверхности цели менее 15°.

Размещаемые в головной части ракеты известные датчики цели реакционного типа, построенные на принципе смыкания двух проводящих поверхностей в момент деформации обтекателя, также не обеспечивают надежного срабатывания при малых углах подхода к поверхности цели, особенно если величина угла подхода меньше угла конусности обтекателя головной части. В этом случае, например при подходе к мягкому грунту, корпус ракеты будет скользить вдоль его поверхности без деформации обтекателя вплоть до заглубления ракеты в грунт не менее чем на половину калибра. Это приводит к тому, что срабатывание разрывного заряда происходит в заглубленном не менее чем на половину диаметра в грунт положении. Грунт экранирует значительную часть разлетающейся осколочной оболочки разрывного заряда, уменьшая эффективность осколочного действия по целям, расположенным на поверхности грунта, и предотвращая поражение целей, укрытых в складках местности.

Включение в состав взрывательного устройства дополнительно неконтактных датчиков цели на электромагнитном принципе не обеспечивает требуемой точности, так как известные датчики, основанные на использовании радиоизлучения или магнитометрических методов фиксации цели, имеют большой разброс по дальности срабатывания, что при настильных траекториях ракеты приводит к большим ошибкам срабатывания по пролету, достигающим при углах подхода к поверхности земли порядка 3-5 градусов значений порядка сотен метров.

Так, например, известна конструкция боевой части тандемного типа, предназначенная для использования в противотанковых и зенитных управляемых ракетах (например, по патенту РФ №2046281, МКИ6 F 42 В 12/10, опубл. 20.10.95 бюл. №29), содержащая основной и лидирующий заряды, взрывательное устройство, включающее контактный датчик цели реакционного типа (в виде двух изолированных контактов) и неконтактный датчики цели на электромагнитном принципе, предохранительно-исполнительные механизмы, блок электронной задержки и электрические цепи. Боевая часть тандемного типа, описанная в указанном патенте, снабжена лидирующим зарядом кумулятивного действия и основным зарядом многоцелевого назначения, кумулятивного и осколочно-фугасного действия.

Описанное в указанном патенте техническое решение как наиболее близкое к заявляемому по технической сущности и достигаемому техническому результату выбрано за прототип.

Признаки прототипа, общие с заявляемой конструкцией осколочно-фугасной БЧ тандемного типа:

- основной и лидирующий заряды,

- взрывательное устройство с датчиками цели контактного и неконтактного действия, предохранительно-исполнительными механизмами, блоком электронной задержки и электрическими цепями,

- рулевой отсек, расположенный между лидирующим и основным зарядами.

Указанный прототип имеет недостатки, приводящие к снижению эффективности осколочно-фугасного действия.

Существенным недостатком конструкции прототипа является применение лидирующего заряда кумулятивного действия и размещение контактного датчика цели взрывателя в головной части обтекателя.

Применение лидирующего заряда кумулятивного действия существенно ограничивает величину меридионального угла разлета поражающих элементов (осколков кумулятивной струи), формируемых при срабатывании лидирующего заряда. Основной поток осколков в этом случае движется только вдоль оси лидирующего заряда, что соответствует значению меридионального угла разлета примерно ±2-3°. Наличие между лидирующим и основным зарядами рулевого отсека приводит к тому, что большая часть направленного вперед по полету ракеты осколочного потока, формируемого основным зарядом, экранируется элементами конструкции рулевого отсека.

Размещение контактного датчика цели взрывателя в головной части обтекателя приводит к дополнительной экранировке части осколочного поля поражения элементами конструкции датчика и его крепления к обтекателю.

Другим существенным недостатком прототипа является применение неконтактного датчика на электромагнитном принципе. При пуске снаряда с наземной пусковой установки или низколетящего вертолета по цели, расположенной на удалении в 3-5 километров, углы подхода к поверхности земли практически всегда будут в пределах нескольких градусов. Как было отмечено выше, известные датчики, основанные на использовании радиоизлучения или магнитометрических методов фиксации цели, имеют большой разброс по дальности срабатывания. При настильных траекториях ракеты это приводит к большим ошибкам срабатывания по пролету, достигающим при углах подхода к поверхности земли порядка 3-5 градусов значений порядка сотен метров, что приводит к большим значениям промахов и снижает эффективность действия по целям, расположенным на указанной поверхности.

Задачей, на решение которой направлено предлагаемое изобретение, является:

- обеспечение эффективного осколочно-фугасного действия ОФБЧ в составе управляемого снаряда по целям, расположенным на поверхности земли, при подходе снаряда к этой поверхности под малыми углами,

- повышение эффективности совместного осколочно-фугасного действия по целям с прочной поверхностью при подходе снаряда к этой поверхности под большими углами.

В отличие от известной боевой части тандемного типа, содержащей лидирующий заряд кумулятивного действия и основной заряд кумулятивного и осколочно-фугасного действия, взрывательное устройство, включающее контактный датчик цели реакционного типа (в виде двух изолированных контактов) и неконтактный датчики цели на электромагнитном принципе, предохранительно-исполнительные механизмы, блок электронной задержки и электрические цепи, в предлагаемой боевой части применен размещенный в полости обтекателя лидирующий заряд осколочно-фугасного действия, между лидирующим и основным зарядом расположен рулевой отсек, при этом корпуса лидирующего и основного зарядов содержат готовые поражающие элементы, взрывательное устройство снабжено размещенными равномерно по окружности боковой поверхности корпуса неконтактными датчиками цели оптического типа, диаграмма направленности которых ориентирована перпендикулярно оси боевой части, и контактными датчиками цели инерционного действия, диаграмма направленности которых ориентирована вдоль оси боевой части, причем блок электронной задержки входит в состав электрической цепи, соединяющей контактный датчик цели и предохранительно-исполнительный механизм основного заряда.

Лидирующий осколочно-фугасный заряд помещен в полусферический корпус, ориентированный вершиной полусферы в направлении вершины обтекателя по оси БЧ, при этом в корпусе расположены готовые поражающие элементы шаровидной формы.

Технические решения, содержащие признаки, отличающие заявляемое решение от прототипа, неизвестны и явным образом из уровня техники не следуют. Это позволяет считать, что заявляемое решение является новым и обладает достаточным изобретательским уровнем.

Каждый из вышеуказанных существенных признаков необходим, а их совокупность является достаточной для достижения новизны качества нового сверхэффекта, не присущего признакам в их разобщенности.

Сущность предлагаемого технического решения поясняется графическими изображениями на фиг.1-3. На фиг.1 показан общий вид предлагаемой осколочно-фугасной боевой части в разрезе. На фиг.2 иллюстрируется процесс срабатывания разрывного заряда боевой части при подходе снаряда к поверхности земли под малыми углами (например, около 5°). На фиг.3 иллюстрируется процесс срабатывания разрывного заряда боевой части при подходе к прочной поверхности цели под углом, близким к нормали.

Предлагаемая боевая часть для управляемого снаряда содержит (фиг.1) обтекатель (1), взрывательное устройство с активными неконтактными (2) и контактными (3) датчиками цели, лидирующий заряд осколочно-фугасного действия (4), с предохранительно-исполнительным механизмом (5), основной заряд осколочно-фугасного действия (6) с предохранительно-исполнительным механизмом (7). Позициями (8) и (9), (10) и (11) показаны передняя (по полету) и задняя границы меридионального угла разлета осколочного поля поражения, формируемого соответственно лидирующим и основным зарядами. Позицией (12) обозначен рулевой отсек. Контактные и неконтактные датчики цели, а также блок электронной задержки установлены в отсеке взрывательного устройства, размещенном со стороны донной части основного заряда.

На фиг.2 и 3 позицией (13) условно показаны хвостовые отсеки ракеты в момент ее подхода к поверхности цели (14). На фиг.2 позицией 15 отмечено значение предельной дальности (Нпр) срабатывания неконтактных датчиков цели.

Предлагаемая боевая часть работает в двух режимах: неконтактном и контактном. В неконтактном режиме (фиг.2) работа БЧ происходит следующим образом. После того как расстояние между неконтактным датчиком цели (2) и поверхностью преграды (14) станет меньше предельной дальности срабатывания (Нпр), отраженный от поверхности цели сигнал активного неконтактного датчика обеспечивает выдачу сигналов на одновременное срабатывание предохранительно-исполнительных механизмов (5) и (7). Такой режим срабатывания обеспечивает предконтактный подрыв разрывного заряда, при котором условия заглубления разрывного заряда в грунт и экранировки осколочного поля поражения грунтом полностью отсутствуют. При этом выбором величины предельной дальности срабатывания неконтактных датчиков цели можно значительно поднять эффективность осколочного действия, обеспечив поражение элементарных целей, экранирующих друг друга на местности или укрытых в окопах или складках местности.

В контактном режиме (фиг.3) работа боевой части происходит следующим образом. При соударении с прочной поверхностью цели под углами, близкими к нормали, обтекатель боевой части (1) деформируется, не оказывая заметного силового воздействия на контактные датчики цели, установленные в отсеке взрывательного устройства, размещенного со стороны донной части основного заряда (6). Величина нагрузки на контактные датчики цели резко возрастет только при подходе к прочной поверхности цели корпуса лидирующего заряда, что обеспечивает срабатывание контактных датчиков цели и выдачу сигнала на подрыв ПИМа (5) лидирующего заряда (4). Подрыв лидирующего заряда при этом происходит в момент непосредственного контакта между его корпусом и прочной преградой, что приводит к увеличению эффективности совместного осколочно-фугасного действия лидирующего заряда по прочной преграде.

Сигнал на подрыв основного заряда от контактных датчиков передается на ПИМ (7) основного заряда (6) через блок электронной задержки, что обеспечивает приближение основного заряда на заданное расстояние к прочной преграде.

Подрыв основного заряда на заданном расстоянии от поверхности прочной преграды, предварительно получившей повреждения в момент срабатывания лидирующего заряда, приводит к увеличению эффективности осколочно-фугасного действия БЧ по рассматриваемой преграде. При этом выбором величины задержки времени срабатывания основного заряда можно значительно увеличить эффективность осколочного действия по внутренним или внешним элементам конструкции цели, реализуя для основного заряда либо режим заглубленного подрыва, либо предконтактного срабатывания.

Использование в составе БЧ лидирующего заряда осколочно-фугасного действия, меридиональный угол разлета осколочного поля поражения у которого лежит в пределах 0-ϕЛмакс

, обеспечивает ликвидацию экранировки рулевым отсеком передней (по полету) части осколочного поля поражения, формируемого основным зарядом, что увеличивает эффективность действия БЧ по цели, в направлении которой произведен запуск ракеты.

Задняя (по полету) граница угла разлета осколочного поля поражения, определяемая величиной ϕОмакс

, устанавливается исходя из реальных условий применения ракеты, которая комплектуется предлагаемой БЧ. Такими условиями, ограничивающими максимальное значение меридионального угла разлета, могут быть требования обеспечения безопасности носителя в условиях срабатывания БЧ на малом удалении от места пуска сразу в момент взведения ПИМа. Кроме того, осколки, имеющие значения меридионального угла разлета, близкие к 180°, движутся практически в противоположном движению ракеты направлении, в связи с чем дают малый вклад в поражающее действие БЧ.

Граничное значение меридионального угла основной части осколочного потока определяется направлением нормали к поверхности осколочной оболочки в ее торцевой зоне. Небольшое количество осколков (до 5% от общего их числа), разлетающееся под углами, большими чем граничное значение, в предлагаемой БЧ экранируются взрывателем и хвостовыми отсеками ракеты. Поэтому при построении профиля задней (по полету) части осколочной оболочки радиус кривизны торцевой зоны осколочной оболочки целесообразно размещать на продолжении прямой, проходящей через передний (по полету) край взрывательного устройства и торец осколочной оболочки (см. фиг.1).

Предлагаемое техническое решение реализовано при разработке осколочно-фугасной боевой части (ОФБЧ) для управляемой ракеты среднего калибра. Разработанная ОФБЧ размещена в двух отсеках ракеты. Отсек лидирующего заряда, содержит обтекатель, лидирующий осколочно-фугасный заряд, помещенный в полусферический корпус, содержащий готовые поражающие элементы шаровидной формы, ориентированный вершиной полусферы в направлении вершины обтекателя по оси БЧ, и ПИМ. Отсек основного заряда содержит основной осколочно-фугасный заряд, помещенный в корпус, содержащий готовые поражающие элементы шаровидной формы, ПИМ и неконтактно-контактный датчик цели (НКДЦ), в состав которого включен блок электронной задержки срабатывания ПИМа основного заряда, действующий при реализации режима контактного срабатывания.

НКДЦ содержит четыре активных неконтактных датчика цели оптического действия, размещенные равномерно по окружности собственного корпуса, являющегося частью корпуса отсека основного заряда. Диаграмма направленности этих датчиков ориентирована перпендикулярно оси БЧ, а предельная дальность срабатывания зависит от коэффициента белизны отражающей поверхности и равна 2-3 калибрам ракеты. Кроме того, НКДЦ содержит контактные датчики цели, диаграмма направленности которых ориентирована вдоль оси БЧ. Датчики установлены внутри корпуса НКДЦ на его торцевой поверхности. Выдача команды на срабатывание от этого датчика происходит при достижении заданной величины тормозящей перегрузки, действующей в течение заданного отрезка времени.

Оценка эффективности поражающего действия ракеты, снабженной боевой частью тандемного типа, разработанной в соответствии с предлагаемым техническим решением, показывает высокую эффективность осколочно-фугасного действия БЧ по таким целям, как легкобронированная и небронированная техника, живая сила на местности, в автомобилях и зданиях.

Похожие патенты RU2251069C1

название год авторы номер документа
ОСКОЛОЧНО-ФУГАСНАЯ БОЕВАЯ ЧАСТЬ 2003
  • Авенян В.А.
  • Курепин А.Е.
  • Яхимович В.Н.
  • Гришин В.В.
  • Гущин Н.И.
  • Баннов В.Я.
  • Кашин В.М.
  • Питиков С.В.
  • Эдвабник В.Г.
RU2247928C1
ОСКОЛОЧНО-ФУГАСНАЯ БОЕВАЯ ЧАСТЬ 2006
  • Авенян Владимир Амбарцумович
  • Курепин Александр Евгеньевич
  • Питиков Сергей Викторович
  • Малинин Александр Михайлович
  • Кашин Валерий Михайлович
  • Баннов Владимир Яковлевич
RU2301957C1
ОСКОЛОЧНО-ФУГАСНАЯ БОЕВАЯ ЧАСТЬ НАПРАВЛЕННО-КРУГОВОГО ДЕЙСТВИЯ 2006
  • Авенян Владимир Амбарцумович
  • Алексеев Валерий Владимирович
  • Курепин Александр Евгеньевич
  • Баннов Владимир Яковлевич
  • Камнев Юрий Витальевич
  • Эдвабник Валерий Григорьевич
RU2301958C1
СПОСОБ ПЕРЕКЛЮЧЕНИЯ РЕЖИМА СРАБАТЫВАНИЯ БОЕВОЙ ЧАСТИ УПРАВЛЯЕМОЙ РАКЕТЫ И БОЕВАЯ ЧАСТЬ 2005
  • Авенян Владимир Амбарцумович
  • Алексеев Валерий Владимирович
  • Курепин Александр Евгеньевич
  • Питиков Сергей Викторович
  • Вуколов Александр Сергеевич
  • Баннов Владимир Яковлевич
  • Печенкин Юрий Анатольевич
RU2317513C2
УПРАВЛЯЕМАЯ РАКЕТА 2004
  • Авенян Владимир Амбарцумович
  • Курепин Александр Евгеньевич
  • Семин Василий Анатольевич
  • Питиков Сергей Викторович
  • Кашин Валерий Михайлович
  • Огнев Владимир Николаевич
  • Баннов Владимир Яковлевич
  • Эдвабник Валерий Григорьевич
RU2278351C1
ОСКОЛОЧНО-ФУГАСНАЯ БОЕВАЯ ЧАСТЬ 2004
  • Авенян Владимир Амбарцумович
  • Курепин Александр Евгеньевич
  • Яхимович Владимир Николаевич
  • Малинин Александр Михайлович
  • Питиков Сергей Викторович
  • Кашин Валерий Михайлович
RU2269739C1
УПРАВЛЯЕМЫЙ СНАРЯД 2004
  • Авенян В.А.
  • Алексеев В.В.
  • Яхимович В.Н.
  • Курепин А.Е.
  • Малинин А.М.
  • Дудка В.Д.
  • Липсман Д.Л.
  • Тонкачев В.В.
  • Громов В.В.
  • Акимов В.А.
RU2262066C1
БОЕВОЕ СНАРЯЖЕНИЕ РАКЕТЫ 2020
  • Доронин Виктор Валентинович
  • Бобков Сергей Алексеевич
  • Соколовский Виктор Владимирович
  • Дорофеев Владимир Александрович
  • Самонов Виктор Алексеевич
  • Янцевич Михаил Владимирович
  • Метельников Александр Юрьевич
RU2769035C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ СРАБАТЫВАНИЯ НЕКОНТАКТНОГО ВЗРЫВАТЕЛЯ ПРИ ПРОВЕДЕНИИ ЛЕТНЫХ ИСПЫТАНИЙ УПРАВЛЯЕМОГО СНАРЯДА 2003
  • Алексеев В.В.
  • Курепин А.Е.
  • Малинин А.М.
  • Питиков С.В.
  • Лыхвар В.В.
RU2231017C1
МНОГОЦЕЛЕВАЯ УПРАВЛЯЕМАЯ РАКЕТА В ПУСКОВОМ КОНТЕЙНЕРЕ 2004
  • Питиков Сергей Викторович
  • Гришин Валерий Васильевич
  • Кашин Валерий Михайлович
  • Вуколов Александр Сергеевич
  • Судариков Валерий Иванович
  • Батищев Константин Александрович
  • Скрябин Михаил Александрович
  • Рютин Валерий Борисович
  • Прончев Юрий Васильевич
  • Шляхов Валерий Павлович
RU2277693C1

Иллюстрации к изобретению RU 2 251 069 C1

Реферат патента 2005 года БОЕВАЯ ЧАСТЬ ТАНДЕМНОГО ТИПА

Изобретение относится к оборонной технике и может быть использовано для создания боевых частей высокоточных управляемых ракет малого и среднего калибра, предназначенных для поражения легкобронированной и небронированной техники, а также расположенной на местности и в укрытиях живой силы противника. Боевая часть тандемного типа содержит основной заряд, лидирующий осколочно-фугасный заряд, размещенный в полости обтекателя, рулевой отсек, расположенный между основным и лидирующим зарядами, и взрывательное устройство с датчиками цели, предохранительно-исполнительными механизмами, блоком электронной задержки и электрическими цепями. Корпуса лидирующего и основного зарядов содержат готовые поражающие элементы, взрывательное устройство снабжено размещенными равномерно по окружности боковой поверхности своего корпуса неконтактными датчиками цели, диаграмма направленности которых ориентирована перпендикулярно оси боевой части, и контактными датчиками цели, диаграмма направленности которых ориентирована вдоль оси боевой части. Блок электронной задержки входит в состав электрической цепи, соединяющей контактный датчик цели и предохранительно-исполнительный механизм основного заряда. Технический результат заключается в повышении осколочно-фугасного действия боевой части. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 251 069 C1

1. Осколочно-фугасная боевая часть тандемного типа, содержащая основной заряд, лидирующий заряд, размещенный в полости обтекателя, рулевой отсек, расположенный между основным и лидирующим зарядами, и взрывательное устройство с датчиками цели, предохранительно-исполнительными механизмами, блоком электронной задержки и электрическими цепями, отличающаяся тем, что лидирующий заряд выполнен осколочно-фугасным, корпусы лидирующего и основного зарядов содержат готовые поражающие элементы, а взрывательное устройство снабжено размещенными равномерно по окружности боковой поверхности своего корпуса неконтактными датчиками цели, диаграмма направленности которых ориентирована перпендикулярно оси боевой части, и контактными датчиками цели, диаграмма направленности которых ориентирована вдоль оси боевой части, причем блок электронной задержки входит в состав электрической цепи, соединяющей контактный датчик цели и предохранительно-исполнительный механизм основного заряда.2. Боевая часть по п.1, отличающаяся тем, что корпус лидирующего заряда выполнен полусферической формы, ориентирован вершиной полусферы в направлении вершины обтекателя по оси боевой части и содержит готовые поражающие элементы шаровидной формы.

Документы, цитированные в отчете о поиске Патент 2005 года RU2251069C1

УПРАВЛЯЕМАЯ РАКЕТА 1992
  • Шипунов А.Г.
  • Тихонов В.П.
  • Иванов А.Г.
  • Захаров Л.Г.
  • Михайлин С.В.
  • Кузнецова В.И.
RU2046281C1
СНАРЯД 2001
  • Липсман Д.Л.
  • Тонкачев В.В.
  • Громов В.В.
  • Малинин А.М.
  • Курепин А.Е.
  • Авенян В.А.
  • Алексеев В.В.
RU2194941C1
ОСКОЛОЧНО-ФУГАСНЫЙ СНАРЯД (ЕГО ВАРИАНТЫ) 1992
  • Одинцов В.А.
RU2018779C1
US 4991513 А, 12.02.1991.

RU 2 251 069 C1

Авторы

Авенян В.А.

Курепин А.Е.

Гришин В.В.

Говоруха Б.А.

Малинин А.М.

Даты

2005-04-27Публикация

2003-10-14Подача