Изобретение относится к рыбному хозяйству, в частности к устройствам для направленного перемещения рыбы, и может быть использовано в качестве рыбозащитного или рыбоудерживающего устройства.
Известно достаточное количество рыбозащитных или рыбоудерживающих устройств, в которых эффект рыбоудержания достигается созданием в воде, в межэлектродном пространстве электрического поля.
Наиболее известным в России является устройство РЗУ-1, в котором рыбоудержание производится при помощи подачи на электроды защитного шлейфа тока промышленной частоты. Это устройство обладает недостаточной эффективностью для мелких размеров рыбы и представляет собой опасность для рыбы больших размеров.
Существуют так же и устройства с импульсным питанием электродов.
Наиболее близким к заявленному является устройство для воздействия на рыб импульсным электрическим полем, которое включает в себя источник питания, емкостный накопитель, схему управления, тиристорный коммутатор и электроды (SU 327908, А 01 К 79/02, 02.02.72), в котором электрическая энергия накапливается в емкостном накопителе и через тиристорный коммутатор, управляемый схемой управления, подается на электроды защитного шлейфа. Такой способ при всей своей простоте неэкономичен по расходу электроэнергии (потери при перезаряде емкостей), позволяет получить в нагрузке только параметрическую форму импульса, не обладает достаточной надежностью, т.к. емкостный накопитель работает при больших разрядных токах, и подвержен потерям эффективности при возникающих случайных неравномерностях проводимостей участков шлейфа.
Техническими задачами, на решение которых направлено данное предлагаемое изобретение, являются повышение надежности и эффективности рыбоудерживающего эффекта, снижение энергозатрат и стоимости устройства.
Сущность предлагаемого изобретения заключается в следующем.
В межэлектродном пространстве защитного шлейфа создается непроходимое для рыбы электрическое поле. Поле имеет изменяющийся вектор направленности и постоянный характер потребляемого тока при импульсных включениях нагрузки. Межэлектродное пространство шлейфа дополнительно используется в качестве балластного устройства при накачке разрядных емкостей, а все перемещения электрической энергии внутри устройства происходят через межэлектродное пространства защитного шлейфа.
В представленной на чертеже блок-схеме устройства блок питания 6 подает питание на все устройство через регулятор потребляемого тока 7, что позволяет исключить броски потребляемого тока во время работы системы и дает возможность применять питание от источников ограниченной мощности.
Блок управления запуском тиристорных ключей 9 задает импульсный режим работы для тиристорного ключа накачки 8 и тиристорных ключей токовых посылок 14. Запуск тиристорных ключей токовых посылок 14 осуществляется через коммутатор нагрузки 10 и устройства удаленного запуска “Разрядная шина” 11, 12.
Накачка разрядных емкостей 19 производится через тиристорный ключ накачки 8, слаботочный соединительный кабель управления и накачки 2, сильноточный токопровод 4, шину общего потенциала 0, пассивные электроды 17, межэлектродное пространство 16, активные электроды 18, зарядные емкости 19 и один из токопроводов секций защитного шлейфа А и В.
Токовая посылка в межэлектродное осуществляется следующим образом.
Разрядные емкости 19 по сигналу из блока управления 9 через коммутатор 10, управляющий устройствами удаленного запуска тиристорных ключей “разрядная шина” 11, 12, по заданной программе сбрасывают накопленную в разрядных конденсаторах 19 электрическую энергию в межэлектродное пространство 16 через тиристорные ключи токовых посылок 14. Резонансный контур вольтодобавки 15 параметрически увеличивает напряжение в межэлектродном пространстве 16, одновременно запирая тиристорные ключи токовых посылок 14, и поддерживает в межэлектродном пространстве ток, определяемый током перезарядки емкости LC контура и разрядных емкостей. После сигнала из блока управления 9 и включения тиристорного ключа накачки 8 процесс накачки (зарядки) разрядных конденсаторов 19 повторяется и после его завершения или программного прекращения система готова к осуществлению следующей токовой посылки.
При поочередном включении токопроводов секций защитного шлейфа А и В изменяется во время работы системы вектор направленности электрического поля в межэлектродном пространстве 16.
Установка разрядных емкостей шлейфа 19 непосредственно на активных электродах шлейфа 18 позволяет отказаться от установки ориентирующих синхронных звуковых излучателей, т.к. в процессе разряда разрядных емкостей шлейфа 19 их обкладки создают достаточный для отслеживания в воде синхронный с электрическим сигналом акустический щелчок. Кроме того, распределение разрядных емкостей шлейфа 19 по всему защищаемому поперечнику позволяет полностью выровнять электрический потенциал и межэлектродные токи в зоне защиты, избежать шунтирования всего шлейфа единственным неисправным электродом или его частью.
Вся электрическая энергия, потребляемая устройством, как энергия накачки емкостей, так и энергия их разряда пропускается через межэлектродное пространство 16, создавая при этом программно повторяющуюся импульсную токовую посылку, формируемую блоком управления 9 и коммутатором 10, начинающуюся с разрядного тока разрядных емкостей шлейфа 19 через межэлектродное пространство 16, увеличиваемую током LC контура 15 и заканчивающуюся затухающими параметрическими импульсами зарядки разрядных емкостей шлейфа 19 обратной полярности через то же межэлектродное пространство 16.
Устройство состоит из управляющего блока 1, слаботочного кабеля управления и накачки 2, соединяющего управляющий блок 1 и накопитель 3 сильноточных тоководов 4, соединяющих накопитель 3 и конструкции защитного шлейфа 5. Накопитель 3 для исключения электрических потерь удален от управляющего блока на расстояние до 2000 м и установлен в непосредственной близости к конструкциям защитного шлейфа.
Управляющий блок 1 состоит из внутренних функциональных элементов: блока питания 6, регулятора потребляемого тока 7, тиристорного ключа накачки 8, блока управления 9, коммутатора нагрузки 10 и разрядных шин А и В 11, 12 соответственно.
Накопитель 3 состоит из внутренних функциональных элементов: разделительных диодов 13, тиристорных ключей токовых посылок 14 и резонансного контура вольтодобавки 15.
Конструкции защитного шлейфа 5 состоят из внутренних функциональных элементов: шины общего потенциала 0, оснащенной пассивными электродами 17, токопроводов секций защитного шлейфа А и В, оснащенных активными электродами 18, на которых установлены разрядные емкости 19.
Изобретение при минимальных энергетических и финансовых затратах позволяет достигнуть максимального отпугивающего эффекта, что является определяющим фактором в работе любой рыбозащитной системы.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ВОЗДЕЙСТВИЯ НА РЫБ ЭЛЕКТРИЧЕСКИМ ПОЛЕМ | 1999 |
|
RU2157625C1 |
СПОСОБ ЗАЩИТЫ МОЛОДИ И ПРОМЫСЛОВЫХ РЫБ ОТ ПОПАДАНИЯ В ТЕХНИЧЕСКИЕ И ЦЕЛЕВЫЕ ВОДОЗАБОРЫ | 1996 |
|
RU2095980C1 |
СПОСОБ ЛЕЧЕНИЯ ДЕСТРУКТИВНЫХ ФОРМ ТУБЕРКУЛЕЗА ЛЕГКИХ, ГАЗОВЫЙ ЛАЗЕР И ЛАЗЕРНАЯ УСТАНОВКА ДЛЯ ЛЕЧЕНИЯ ЗАБОЛЕВАНИЙ, СОПРОВОЖДАЮЩИХСЯ ВОСПАЛИТЕЛЬНЫМ ПРОЦЕССАМИ С МИКРОБНОЙ ФЛОРОЙ | 1992 |
|
RU2082455C1 |
ОРТОГОНАЛЬНОЕ РЫБОЗАЩИТНОЕ УСТРОЙСТВО С ЭРЛИФТНЫМ ФИЛЬТРОМ | 2011 |
|
RU2495191C2 |
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ ИЗ ТОКОПРОВОДЯЩИХ МАТЕРИАЛОВ | 2010 |
|
RU2449859C2 |
ИМПУЛЬСНЫЙ ИСТОЧНИК ПРОНИКАЮЩЕГО ИЗЛУЧЕНИЯ | 2006 |
|
RU2335100C2 |
ИМПУЛЬСНЫЙ ИСТОЧНИК ПИТАНИЯ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ С КОРОНООБРАЗУЮЩИМИ РАЗРЯДНЫМИ ЭЛЕКТРОДАМИ | 1996 |
|
RU2115214C1 |
ЭЛЕКТРОРАЗРЯДНЫЙ ЛАЗЕР (ВАРИАНТЫ) | 1996 |
|
RU2107366C1 |
Электроразрядный источник излучения | 2021 |
|
RU2771664C1 |
РАЗРЯДНОЕ УСТРОЙСТВО ИМПУЛЬСНО-ПЕРИОДИЧЕСКОГО ГАЗОРАЗРЯДНОГО ТЕ ЛАЗЕРА | 2015 |
|
RU2618586C1 |
Изобретение относится к области электротехники, в частности к устройству для создания в водной среде раздражающего электрического поля, и может быть использовано в рыбном хозяйстве в качестве рыбозащитного или рыбоудерживающего устройства. Распределение разрядных емкостей по всему защищаемому шлейфу позволяет полностью выровнять электрический потенциал и избежать шунтирования всего шлейфа единственным неисправным электродом или его частью. Техническим результатом изобретения является повышение надежности и эффективности работы устройства при снижении его стоимости, а также снижение энергозатрат. Вся электрическая энергия, потребляемая устройством, как энергия накачки емкостей, так и энергия их разряда пропускается через межэлектродное пространство, создавая при этом программно повторяющуюся импульсную токовую посылку, формируемую блоками управления через межэлектродное пространство. 3 з.п. ф-лы, 1 ил.
УСТРОЙСТВО ДЛЯ ВОЗДЕЙСТВИЯ НА РЫБ ЭЛЕКТРИЧЕСКИМ ПОЛЕМ | 1999 |
|
RU2157625C1 |
Устройство для электролова рыбы | 1989 |
|
SU1790360A3 |
СПОСОБ ЗАЩИТЫ МОЛОДИ И ПРОМЫСЛОВЫХ РЫБ ОТ ПОПАДАНИЯ В ТЕХНИЧЕСКИЕ И ЦЕЛЕВЫЕ ВОДОЗАБОРЫ | 1996 |
|
RU2095980C1 |
RU 94028924 А1, 10.06.1996 | |||
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОЛОВА РЫБЫ | 1992 |
|
RU2045899C1 |
WO 9208334 А1, 14.05.1992 | |||
US 3717802 А, 20.02.1973. |
Авторы
Даты
2005-06-27—Публикация
2002-03-18—Подача