Изобретение относится к области теплоэнергетики и может быть использовано в качестве энергетической установки для объектов специального назначения, например для специальных фортификационных сооружений, подводных технических средств и мобильных комплексов.
Известно устройство двигателя Стирлинга, состоящее из нагревателя, регенератора, холодильника и поршневой группы (Батырев А.Н., Кошеваров В.Д., Лейкин О.Ю. Корабельные ядерные энергетические установки зарубежных стран. - СПб.: Судостроение, 1994, с.205).
Известна энергоустановка с двигателем Стирлинга и водородосодержащим топливом, включающая в себя двигатель Стирлинга и теплоиспользующую холодильную машину (Патент РФ №2169319, F 25 В 27/02, Бюл. №17 от 20.06.2001). Однако в данной установке используется дорогостоящие водородное топливо и камера сгорания с катализатором.
Известна энергохолодильная система с двигателем Стирлинга, использующая в качестве источника теплоты реакцию окисления магния (Патент РФ №2214566, F 25 В 27/02, Бюл. №29 от 20.10.2003). Однако для начала реакции окисления магния и выделения теплоты требуются наличие окислителя, а в результате реакции образуются окислы магния, которые необходимо удалять.
Известны безгазовые топлива и их характеристики (Генкин А.Л., Лотонин O.K., Сильян А.М. Характеристики безгазовых топлив/ В научно-техническом сборнике "Нетрадиционная энергетика". СПб.: ВМИИ, 2000, с.16-20). При этом отмечается, что, в основном, в качестве горючего используются металлы, а окислитель может быть как в газообразном состоянии и хранится отдельно от горючего, так и в твердом состоянии и храниться в смешанном состоянии с горючим, образуя термитные составы (термиты).
Известна автономная энергетическая установка на основе двигателя Стирлинга с безгазовым топливом (Халиуллин Ю.М., Темнов В.Н., Мошков В.Н. Корабельные анаэробные неатомные энергетические установки на безгазовом топливе.//Судостроение, 2000, №1, с.36-39). Однако в данной установке реакционная камера с безгазовым топливом выполнена проточной, что требует введения в схему установки дополнительных систем хранения и подачи газообразного окислителя, а также систем удаления продуктов сгорания из камеры сгорания и их хранения в дополнительных емкостях.
Известна энергетическая установка с двигателем Стирлинга и промежуточным теплоносителем, состоящая из двигателя Стирлинга, нагреватель которого связан с источником теплоты с помощью тепловой трубы. (Левенберг В.Д., Ткач М.Р., Гольстрем В.А. Аккумулирование тепла. - Киев: Техника, 1991, с.38-41). Однако использующийся в этой установке тепловой генератор на основе теплоаккумулирующего вещества требует длительной зарядки (нагрева) от источника электрической энергии.
Технический результат, который может быть получен при осуществлении изобретения, заключается в повышении скорости закуска и управляемости двигателя.
Для достижения данного технического результата энергетическая установка с двигателем Стирлинга и промежуточным теплоносителем, состоящая из двигателя Стирлинга, нагреватель которого связан с источником теплоты с помощью тепловой трубы, снабжена электрогенератором на одном валу с двигателем Стирлинга, а источник теплоты выполнен в виде теплового генератора с безгазовым топливом на основе термитов.
Введение в состав энергетической установки с двигателем Стирлинга и промежуточным теплоносителем источника теплоты, выполненного в виде теплового генератора с безгазовым топливом на основе термитов, и электрогенератора на одном валу с двигателем Стирлинга позволяет получить новое свойство, заключающееся в возможности повышения скорости запуска двигателя Стирлинга в работу за счет горения термитов и преобразовании теплоты горения термитов в электрическую энергию.
На чертеже изображена энергетическая установка с двигателем Стирлинга и промежуточным теплоносителем.
Энергетическая установка в своем составе имеет двигатель Стирлинга 1 с нагревателем 2 и холодильником 3, источник тепловой энергии в виде теплового генератора 4 с термитным топливом и электрогенератор 5. Нагреватель 2 двигателя Стирлинга 1 связан с тепловым генератором 4 с помощью тепловой трубы 6. Тепловой генератор 4 состоит из заряда термита (безгазового топлива) 7 и воспламенительного устройства 8.
Энергетическая установка с двигателем Стирлинга и промежуточным теплоносителем работает следующим образом.
Работа энергетической установки начинается в момент подачи импульса энергии (от отдельного источника - не показан) на воспламенительное устройство 8, которое обеспечивает повышение температуры прилегающего к нему участка заряда топлива 7 до температуры воспламенения. Сгорание топлива происходит в высокотемпературной волне горения, распространение которой происходит в тело заряда от места установки воспламенительного устройства 8. Продолжительность процесса горения топлива определяется скоростью распространения фронта пламени, размерами, формой заряда, а также другими его конструктивными особенностями.
Выделившаяся при сгорании термитного топлива 7 теплота приводит к повышению температуры теплоносителя тепловой трубы 6 и начала его циркуляции. Теплота от теплоносителя тепловой трубы 6 за счет теплопроводности передается стенкам нагревателя 2 двигателя Стирлинга 1, что приводит к постепенному повышению температуры нагревателя 2 и, соответственно, нагреву рабочего тела, используемого в самом двигателе Стирлинга 1. С повышением температуры рабочего тела в головке двигателя происходит постепенное повышение давления в рабочем контуре и, в том числе, в рабочем цилиндре. Это, в свою очередь, вызывает перемещение рабочего поршня двигателя и, в конечном итоге, его пуск.
При работе двигателя Стирлинга 1 механическая энергия преобразуется в электрическую с помощью электрогенератора 5. Для охлаждения двигателя Стирлинга 1 используется холодильник 3, через который подается охлаждающая среда.
Источники информации
1. Батырев А.Н., Кошеваров В.Д., Лейкин О.Ю. Корабельные ядерные энергетические установки зарубежных стран. - СПб.: Судостроение, 1994, с.205.
2. Патент РФ №2169319, F 25 В 27/02, Бюл. №17 от 20.06.2001.
3. Патент РФ №2214566, F 25 В 27/02, Бюл. №29 от 20.10.2003.
4. Генкин А.Л., Лотонин O.K., Сильян А.М. Характеристики безгазовых топлив/ В научно-техническом сборнике "Нетрадиционная энергетика". СПб.: ВМИИ, 2000, с.16-20.
5. Халиуллин Ю.М., Темнев В.Н., Мошков В.Н. Корабельные анаэробные неатомные энергетические установки на безгазовом топливе.//Судостроение, 2000, №1, с.36-39.
6. Левенберг В.Д., Ткач М.Р., Гольстрем В.А. Аккумулирование тепла. - Киев: Техника, 1991, с.38-41 - прототип.
Изобретение относится к области теплоэнергетики и может быть использовано в качестве энергетической установки для объектов специального назначения, например для специальных фортификационных сооружений, подводных технических средств и мобильных комплексов. Достигаемый технический результат - повышение скорости запуска и управляемости двигателя. От воспламенительного устройства воспламеняется термитное топливо в тепловом генераторе. Теплота сгорания топлива передается через тепловую трубу к стенкам нагревателя двигателя Стирлинга, что обеспечивает его пуск. При работе двигателя Стирлинга механическая энергия преобразуется в электрическую с помощью электрогенератора. Для охлаждения двигателя Стирлинга используется холодильник, через который подается охлаждающая среда. 1 ил.
Энергетическая установка с двигателем Стирлинга и промежуточным теплоносителем, состоящая из двигателя Стирлинга, нагреватель которого связан с источником теплоты с помощью тепловой трубы, отличающаяся тем, что она снабжена электрогенератором на одном валу с двигателем Стирлинга, а источник теплоты выполнен в виде теплового генератора с безгазовым топливом на основе термитов.
ЛЕВЕНБЕРГ В.Д | |||
и др | |||
Аккумулирование тепла | |||
- Киев: Техника, 1991, с.38-41 | |||
ХАЛИУЛЛИН Ю.М | |||
и др | |||
Корабельные анаэробные неатомные энергетические установки на безгазовом топливе | |||
Судостроение | |||
ЩИТОВОЙ ДЛЯ ВОДОЕМОВ ЗАТВОР | 1922 |
|
SU2000A1 |
АВТОНОМНАЯ КОГЕНЕРАЦИОННАЯ ЭНЕРГОУСТАНОВКА | 1999 |
|
RU2162534C1 |
АВТОНОМНАЯ СТИРЛИНГ-УСТАНОВКА ДЛЯ ОДНОВРЕМЕННОГО ПРОИЗВОДСТВА ЭЛЕКТРОЭНЕРГИИ И ТЕПЛА | 1999 |
|
RU2162532C1 |
US 4306314 А, 22.12.1981. |
Авторы
Даты
2005-09-27—Публикация
2004-03-09—Подача