Изобретение относится к электроэнергетике и может быть использовано в системах электроснабжения различных сфер народного хозяйства: промышленности, сельском хозяйстве, оборонных, транспортных и бытовых объектов.
Известны устройства получения электрической энергии с использованием разряда большой плотности [1]. Его недостатком является то, что оно имеет малый энергетический выход и не может быть использовано для промышленных целей.
Наиболее близким к заявленному устройству получения электрической энергии является трансформатор Тесла, представляющий собой электрическое устройство трансформаторного типа, служащее для возбуждения высоковольтных высокочастотных колебаний и состоящее из двух катушек индуктивности, вставленных друг в друга, разрядника и электрического конденсатора, а также источника высоковольтного напряжения [2]. Его недостатком является низкий к.п.д.
Технический результат заявленного изобретения заключается в повышении выходной энергии.
Технический результат заявленного изобретения достигается тем, что в устройстве для получения электрической энергии, состоящем из подключаемого к внешнему источнику электрической энергии преобразователя низкого напряжения в высокое, высокое напряжение через диод подается на зарядный электрический конденсатор, с которого накопленный заряд через разрядник периодически подается на первую катушку индуктивности, внутри которой соосно с ней установлена вторая катушка индуктивности с увеличенным числом витков, которая с конденсатором настроена в резонанс с периодом разряда разрядника и с которой напряжение через диод передается на зарядный электрический конденсатор, а выход электрической энергии внешнему потребителю осуществляется с помощью третьей катушки индуктивности, установленной соосно первым двум, связанной с ними взаимной индукцией и соединенной с выпрямителем.
Условиями повышения выходной энергии в заявленном изобретении являются высокие пространственные градиенты напряженности магнитного поля на внешней и внутренней поверхностях катушек индуктивности, что достигается пропусканием через первую катушку индуктивности импульса тока с крутыми передним и задним фронтами.
Крутые фронты импульса тока достигаются применением быстродействующего ключа - разрядника или электронного ключа, подключенного к электрическому конденсатору, питаемому от источника напряжения. При самопроизвольном разряде импульс тока возникает при достижении на электрическом конденсаторе высокой разности потенциалов, а прекращение разряда происходит после снижения потенциала на том же электрическом конденсаторе ниже определенного значения.
При использовании электронного ключа его открывают и закрывают периодически схемой управления.
На чертеже показана блок-схема устройства получения электрической энергии, состоящее из стартерной части I и собственно генератора II.
Стартёрная часть I служит для запуска всего устройства получения электрической энергии, используется только в начальный момент и состоит из подключаемого к внешнему источнику 1 электроэнергии, в качестве которого может быть использована электрическая сеть, аккумулятор или электрическая батарея, преобразователя 2 низкого напряжения в высокое, диода 3, через который напряжение подается на зарядный электрический конденсатор 4 собственно генератора I электрической энергии.
Собственно генератор электрической энергии I содержит зарядный конденсатор 4, быстродействующий ключ 5, в качестве которого может быть использован разрядник или электронный ключ, катушки индуктивности 6 W1, W2, W3, ограничивающий элемент 7, ограничивающего амплитуду колебаний во второй катушке индуктивности W2,в качестве которого могут быть использованы варистор, стабилотрон или разрядник, диод 9 обратной связи и диодный мостовой выпрямитель 10.
Работа устройства получения электрической энергии состоит в следующем.
Накопленный зарядным электрическим конденсатором 4 от стартёрного устройства I заряд через быстродействующий ключ 5 подается в первую катушку индуктивности W1, чем в окружающем пространстве возбуждается магнитное поле с высоким пространственным градиентом напряженности.
По окончании разряда магнитное поле передается во вторую катушку индуктивности W2. Напряжение второй катушки индуктивности W2 по цепи обратной связи, в которую включен диод 9, передается на входной зарядный электрический конденсатор 4, чем осуществляется положительная обратная связь. По прошествии времени, необходимого для раскачки генератора, стартёрная часть I отключается.
Для предотвращения неограниченной раскачки энергии часть витков второй катушки индуктивности W2 шунтируется стабилизирующим элементом 8.
Накапливаемый на зарядном электрическом конденсаторе 4 электрический заряд периодически сбрасывается через ключ 5 в первую катушку индуктивности W1, вокруг которой и формируется пульсирующее магнитное поле повышенной энергии.
Для преобразования энергии пульсирующего магнитного поля в электрическую энергию внутри первой катушки индуктивности устанавлена вторая катушка индуктивности W2 с увеличенным числом витков, которая является приемником магнитного поля и в которой в результате приема магнитного поля, созданного первой катушкой индуктивности W1, возникает пульсирующая э.д.с. Для обеспечения непрерывного получения э.д.с. на второй катушке индуктивности W2 устанавливают положительную обратную связь с помощью диода 9, подключенного ко второй катушке индуктивности W2 и к зарядному электрическому конденсатору 4. После достижения необходимой амплитуды колебаний э.д.с. на второй катушке индуктивности W2 зарядный электрический конденсатор 4 начинает заряжаться от э.д.с., возникшей во второй катушке индуктивности W2, после чего внешний источник электрического напряжения, обеспечивший начало процесса, отключается.
Выход энергии внешнему потребителю осуществляется с помощью третьей катушки индуктивности W3, установленной соосно первым двум W1 и W2 и связанной с ними взаимоиндукцией. Поскольку электрическая энергия, снимаемая с третьей катушки индуктивности W3, имеет высокую частоту, что неудобно для массового потребителя, к ней подключен диодный мостовой выпрямитель 10, преобразующий высокочастотный электрический ток в постоянный электрический ток, который может непосредственно или через соответствующие преобразователи использоваться.
Первая катушка индуктивности W1 соединена с цепью быстродействующий ключ 5 - зарядный электрический конденсатор 4. При этом для обеспечения положительной обратной связи выход второй катушки индуктивности W2 подключен через диод 9 к зарядному электрическому конденсатору 4.
В результате осуществляется преобразование энергии магнитного поля в электрическую энергию.
Для выдачи энергии потребителю используется третья катушка индуктивности W3, соединенная с диодным мостовым выпрямителем 10, преобразующим высокочастотные колебания электроэнергии в напряжение постоянного тока.
Источники информации
1. Патент США № 5018189.
2. Эйхенвальд А.А. Электричество. М., тип. И.М.Кушнерова, 1918. Опыты Тесла. С.434-436.
название | год | авторы | номер документа |
---|---|---|---|
ИМПУЛЬСНЫЙ ЭЛЕКТРОИСКРОВОЙ ГЕНЕРАТОР ЭНЕРГИИ | 2013 |
|
RU2510131C1 |
ЭЛЕКТРОИСКРОВОЙ ГЕНЕРАТОР ЭНЕРГИИ | 2012 |
|
RU2510130C2 |
ГЕНЕРАТОР ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ | 2009 |
|
RU2409890C1 |
СХЕМА ДЛЯ ПРОВЕРКИ ИНДУКЦИОННЫХ ЭЛЕКТРОСЧЕТЧИКОВ | 2013 |
|
RU2517757C1 |
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ | 2000 |
|
RU2178244C1 |
ЗАРЯДНОЕ УСТРОЙСТВО ЕМКОСТНОГО НАКОПИТЕЛЯ | 1997 |
|
RU2132105C1 |
БЕСПРОВОДНАЯ ЗАРЯДНАЯ СИСТЕМА | 2022 |
|
RU2792218C1 |
СХЕМА ПИТАНИЯ ЭЛЕКТРОПРИВОДА СО СГЛАЖИВАЮЩИМ ДРОССЕЛЕМ В ЦЕПИ ПОСТОЯННОГО ТОКА | 2002 |
|
RU2224350C2 |
ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ ДЛЯ ТЕХНОЛОГИЧЕСКИХ ЦЕЛЕЙ | 2003 |
|
RU2242851C1 |
Беспроводная зарядная система | 2021 |
|
RU2781948C1 |
Изобретение относится к электроэнергетике и может быть использовано в системах электроснабжения различных сфер народного хозяйства. Технический результат заключается в повышении к.п.д. Устройство для получения электрической энергии состоит из подключаемого к внешнему источнику электрической энергии преобразователя низкого напряжения в высокое, которое через диод подается на зарядный электрический конденсатор. Накопленный заряд с конденсатора через разрядник периодически подается на первую катушку индуктивности, внутри которой соосно с ней установлена вторая катушка индуктивности с увеличенным числом витков. Вторая катушка с конденсатором настроена в резонанс с периодом разряда разрядника. Напряжение с нее через диод передается на зарядный электрический конденсатор. Выход электрической энергии внешнему потребителю осуществляется с помощью третьей катушки индуктивности, установленной соосно первым двум, связанной с ними взаимной индукцией и соединенной с выпрямителем. 1 ил.
Устройство для получения электрической энергии, состоящее из подключаемого к внешнему источнику электрической энергии преобразователя низкого напряжения в высокое, которое через диод подается на зарядный электрический конденсатор, с которого накопленный заряд через разрядник периодически подается на первую катушку индуктивности, внутри которой соосно с ней установлена вторая катушка индуктивности с увеличенным числом витков, которая с конденсатором настроена в резонанс с периодом разряда разрядника и с которой напряжение через диод передается на зарядный электрический конденсатор, а выход электрической энергии внешнему потребителю осуществляется с помощью третьей катушки индуктивности, установленной соосно первым двум, связанной с ними взаимной индукцией и соединенной с выпрямителем.
ЭЙХЕНВАЛЬД А.А | |||
Электричество | |||
М.: Тип | |||
И.М.Кушнерова, 1918, с.434-436 | |||
ВЗРЫВОМАГНИТНЫЙ ГЕНЕРАТОР | 1987 |
|
SU1530047A1 |
Генератор наносекундных импульсов | 1980 |
|
SU852149A1 |
Импульсный резонансный формирующий трансформатор | 1978 |
|
SU790150A1 |
ФАЗОЧУВСТВИТЕЛЬНЫЙ УСИЛИТЕЛЬ | 1971 |
|
SU419882A1 |
Авторы
Даты
2005-09-27—Публикация
2003-05-12—Подача