FIELD: the invention is designed for application in energy engineering and namely may be used at manufacturing of gas air cooling apparatus.
SUBSTANCE: the mode of manufacturing of gas air cooling apparatus envisages manufacturing of heat exchanging finned tubes, manufacturing of a frame, at least one heat exchanging section with lateral walls and interconnecting beams, manufacturing of chambers of input and output of gas, packing the bundle of heat exchanging tubes, manufacturing of collectors of input and output of gas, a supporting construction for the apparatus with supports for the engines of the ventilators and assembling of the elements of the apparatus. At that each lateral wall of the heat exchanging section is fulfilled in the shape of a channel with shelves inverted to the heat exchanging tubes and located on the interior surface of the channel's wall longitudinally oriented by dispersers-cowls of the flow of cooling environment forming the channel's ribs of rigidity which are installed in accord with the height of the channel's wall with a pitch in the axles corresponding to the double pitch between the rows of the tubes in the bundle. At that at least part of the volume of each marginal tube in the row and/or its finning is placed at least in a row under the overhang of the channel's shelf corresponding to the lateral wall of the heat exchanging section of the apparatus. At that the support for the engine of each ventilator consisting out of a central supporting element and tension bars is fulfilled suspended connecting it with corresponding bundles of the supporting construction of the gas air cooling apparatus.
EFFECT: allows to increase manufacturability of assembling the apparatus and its elements at simultaneous decreasing of labor and consumption of materials and increasing thermal technical efficiency of the heat exchanging sections and reliability of the apparatus in the whole due to manufacturing walls of heat exchanging sections allowing to use to optimum the heat exchanging volume of the section and to optimize the feeding of the exterior cooling environment to the tubes at the expense of reducing energy waists for feeding the exterior cooling environment with excluding the necessity in reverse cross-flows in the wall zones of the chambers and combining of functions of the chambers' elements providing the indicated thermal technical effect and simultaneously increasing rigidity of the frame of the heat exchanging sections.
13 dwg, 23 cl
Authors
Dates
2005-12-20—Published
2004-03-26—Filed