ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ Российский патент 2006 года по МПК H01L35/28 

Описание патента на изобретение RU2269184C2

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ).

Прототипом изобретения является ТЭБ, описанная в [1]. ТЭБ состоит из последовательно соединенных в электрическую цепь полупроводниковых термоэлементов, каждый из которых образован двумя ветвями (столбиками, выполненными либо цилиндрическими, либо в виде прямоугольного параллелепипеда), изготовленными из полупроводника соответственно р- и n-типа. Ветви термоэлементов соединяются между собой посредством коммутационных пластин, причем ветви р-типа и n-типа контактируют торцевыми поверхностями соответственно с двумя противоположными поверхностями коммутационной пластины. Коммутационные пластины имеют несколько большую площадь, чем площадь поперечного сечения ветвей, вследствие чего они выступают за поверхность структуры, образованной ветвями ТЭБ.

Недостатками известной конструкции являются определенный риск поражения электрическим током при эксплуатации, так как коммутационные пластины, по которым протекает электрический ток, не электроизолированы, а также неоптимальные для наиболее эффективного теплообмена с объектом охлаждения и системой теплосброса значения площадей выступающих частей коммутационных пластин.

Целью изобретения является устранения риска поражения электрическим током при эксплуатации ТЭБ, улучшение условий теплообмена между коммутационными пластинами и объектом охлаждения, а также системой теплосброса.

Для достижения указанной цели заявляется ТЭБ, состоящая из последовательно соединенных в электрическую цепь посредством коммутационных пластин полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа, причем ветви р-типа и n-типа контактируют торцевыми поверхностями соответственно с двумя противоположными поверхностями коммутационной пластины. Коммутационные пластины же имеют несколько большую площадь, чем площадь поперечного сечения ветвей, вследствие чего они выступают за поверхность структуры, образованной ветвями термоэлектрической батареи. При этом выступающие части коммутационных пластин покрыты защитным слоем высокотеплопроводного диэлектрика. Отношение же площадей выступающих частей четных и нечетных коммутационных пластин определяется из соотношения:

где S2, S1, α2, α1, T2, T1 - соответственно площади, коэффициенты теплообмена поверхностей с окружающими их средами и усредненные температуры выступающих частей четных и нечетных коммутационных пластин, Тcp - температура окружающей среды; ε - холодильный коэффициент термоэлектрической батареи при ее работе в качестве холодильника или коэффициент преобразования энергии в случае ее работы в качестве генератора электрической энергии.

Конструкция ТЭБ приведена на фиг.1-2. ТЭБ состоит из последовательно соединенных в электрическую цепь посредством коммутационных пластин 1 и 2 чередующихся ветвей, изготовленных соответственно из полупроводника р-типа 3 и n-типа 4. Электрическое соединение ветвей осуществляется посредством контакта ветвь р-типа 3 - коммутационная пластина 1 или 2 - ветвь n-типа 4, где ветвь р-типа 3 контактирует торцевой поверхностью к одной из поверхностей коммутационной пластины, а ветвь n-типа 4 - к противоположной. При этом каждая ветвь в ТЭБ контактирует противоположными торцевыми поверхностями с двумя коммутационными пластинами 1 и 2 за исключением токоподводящих ветвей. Коммутационные пластины 1 и 2 имеют площадь, несколько большую, чем площадь поперечного сечения ветвей р- и n-типа 3 и 4, вследствие чего их части выступают за поверхность структуры, образованной ветвями ТЭБ. При этом части нечетных коммутационных пластин 1 выступают за одну поверхность структуры, а части четных коммутационных пластин 2 - за другую. Выступающие части коммутационных пластин покрыты защитным слоем высокотеплопроводного диэлектрика 5.

Поверхность структуры, образованной ветвями ТЭБ, покрыта слоем диэлектрического теплоизоляционного материала 6. На крайних торцевых поверхностях ветвей, находящихся соответственно в начале и конце ТЭБ, имеются контактные токоподводящие площадки 7 (токоотводящие в случае работы ТЭБ в режиме термогенератора).

ТЭБ в случае использования ее в режиме холодильника функционирует следующим образом.

При прохождении сквозь ТЭБ постоянного электрического тока, подаваемого от источника электрической энергии через контактные площадки 7, между коммутационными пластинами 1 и 2, представляющими собой контакты ветвей р- и n-типа 3 и 4, возникает разность температур, обусловленная выделением и поглощением теплоты Пельтье. При указанной на фиг.1 полярности электрического тока происходит нагрев четных коммутационных пластин 2 и охлаждение нечетных 1. Если при этом за счет теплоотвода температура коммутационных пластин 2 поддерживается на постоянном уровне при заданном значении электрического тока, то температура коммутационных пластин 1 снизится до некоторого определенного значения. При заданном электрическом токе величина снижения температуры на коммутационных пластинах будет зависеть от тепловой нагрузки на них. Тепловая нагрузка складывается из теплопритока из окружающей среды и от коммутационных пластин 2, обусловленного теплопроводностью образующих ТЭБ ветвей, теплоты Джоуля, а также теплоты, поступающей от объекта охлаждения. Теплоизоляция 6 служит для уменьшения теплопритока из окружающей среды, а защитный слой высокотеплопроводного диэлектрика 5 - для устранения возможности поражения электрическим током при эксплуатации ТЭБ.

ТЭБ в случае использования ее в режиме термогенератора функционирует следующим образом.

При наличии источника тепла, нагревающего, например, четные коммутационные пластины 2, и системы, рассеивающей тепло с коммутационных пластин 1, между коммутационными пластинами 1 и 2 устанавливается некоторая разность температур. При наличии такой разности температур между коммутационными пластинами 1 и 2, осуществляющими контакт ветвей р- и n-типа 3 и 4, между контактными площадками 7 возникает разность потенциалов - термо-э.д.с., обусловленная эффектом Зеебека. При замыкании контактных площадок 7 на определенную электрическую нагрузку в образовавшейся цепи возникает постоянный электрический ток. Величина протекающего в цепи электрического тока зависит от значения термо-э.д.с., которая в свою очередь зависит от коэффициента термо-э.д.с. термоэлектрического материала, числа термоэлементов в ТЭБ, разности температур между коммутационными пластинами 1 и 2 и величины электрической нагрузки.

Литература

1. Поздняков Б.С., Коптелов Е.А. Термоэлектрическая энергетика. М.: Атомиздат, 1974.

Похожие патенты RU2269184C2

название год авторы номер документа
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2004
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2282274C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2004
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2282278C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2004
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2282277C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2003
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
  • Меркухин Николай Евгеньевич
RU2269183C2
СПОСОБ ОБЕСПЕЧЕНИЯ ФУНКЦИОНИРОВАНИЯ ТЕРМОЭЛЕКТРИЧЕСКОЙ БАТАРЕИ 2003
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2270495C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Хазамова Мадина Абдулаевна
  • Евдулов Денис Викторович
RU2379789C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Магомедов Мурад Рабаданович
  • Евдулов Денис Викторович
RU2376683C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Магомедов Мурад Рабаданович
  • Евдулов Денис Викторович
RU2376682C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2006
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
  • Евдулов Денис Викторович
RU2335036C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2007
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2338299C1

Иллюстрации к изобретению RU 2 269 184 C2

Реферат патента 2006 года ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ). Технический результат: устранение риска поражения электрическим током при эксплуатации, улучшение условий теплообмена между коммутационными пластинами и объектом охлаждения, а также системой теплосброса. Сущность: термоэлектрическая батарея (ТЭБ) состоит из последовательно соединенных в электрическую цепь посредством коммутационных пластин полупроводниковых термоэлементов. Электрическое соединение ветвей осуществляют посредством контакта ветвь р-типа - коммутационная пластина - ветвь n-типа. Ветви р-типа и n-типа контактируют торцевыми поверхностями соответственно с двумя противоположными поверхностями. Коммутационные пластины имеют площадь, несколько большую, чем площадь поперечного сечения ветвей р- и n-типа, вследствие чего их одни концы выступают за поверхность структуры, образованной ветвями ТЭБ. Нечетные коммутационные пластины выступают за одну поверхность структуры, а четные коммутационные пластины - за другую. Выступающие части коммутационных пластин покрыты защитным слоем высокотеплопроводного диэлектрика. Отношение поверхностей выступающих частей четных и нечетных коммутационных пластин определяется из соотношения:

где S2, S1, α1, α2, T2, T1 - соответственно площади, коэффициенты теплообмена поверхностей с окружающими их средами и усредненные температуры выступающих концов четных и нечетных коммутационных пластин, Тср - температура окружающей среды; ε - холодильный коэффициент ТЭБ в случае ее работы в режиме холодильника или коэффициент преобразования энергии в случае работы ТЭБ в режиме термогенератора. 2 ил.

Формула изобретения RU 2 269 184 C2

Термоэлектрическая батарея, состоящая из последовательно соединенных в электрическую цепь посредством коммутационных пластин полупроводниковых термоэлементов, каждый из которых образован двумя ветвями, изготовленными из полупроводника соответственно р- и n-типа, ветви р-типа и n-типа контактируют торцевыми поверхностями соответственно с двумя противоположными поверхностями коммутационной пластины, коммутационные пластины имеют несколько большую площадь, чем площадь поперечного сечения ветвей, вследствие чего они выступают за поверхность структуры, образованной ветвями термоэлектрической батареи, причем нечетные коммутационные пластины выступают за одну поверхность структуры, а четные коммутационные пластины - за другую, отличающаяся тем, что выступающие части коммутационных пластин покрыты защитным слоем высокотеплопроводного диэлектрика, отношение же площадей выступающих частей четных и нечетных коммутационных пластин определяется из соотношения

где S2, S1, α1, α2, T2, T1, - соответственно площади, коэффициенты теплообмена поверхностей с окружающими их средами и усредненные температуры выступающих частей четных и нечетных коммутационных пластин, Тср - температура окружающей среды; ε - холодильный коэффициент термоэлектрической батареи при ее работе в качестве холодильника или коэффициент преобразования энергии в случае ее работы в качестве генератора электрической энергии.

Документы, цитированные в отчете о поиске Патент 2006 года RU2269184C2

ПОЗДНЯКОВ Б.С., КОПТЕЛОВ Е.А
Термоэлектрическая энергетика
М.: Атомиздат, с.88, рис.5.13
ТЕРМОЭЛЕКТРИЧЕСКИЙ ЭЛЕМЕНТ, БАТАРЕЯ ТЕРМОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТОВ И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ 1993
  • Лидоренко Николай Степанович
RU2010396C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 1996
  • Захарцев Ю.В.
RU2098889C1
US 5038569 A, 13.08.1991.

RU 2 269 184 C2

Авторы

Исмаилов Тагир Абдурашидович

Вердиев Микаил Гаджимагомедович

Евдулов Олег Викторович

Меркухин Николай Евгеньевич

Даты

2006-01-27Публикация

2003-11-28Подача