ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ Российский патент 2006 года по МПК H01L35/28 

Описание патента на изобретение RU2282273C2

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям каскадных термоэлектрических батарей (ТЭБ).

Известна ТЭБ, описанная в [1]. ТЭБ содержит несколько (N) каскадов, состоящих из последовательно соединенных в электрическую цепь полупроводниковых термоэлементов (ТЭ), каждый из которых образован двумя ветвями (столбиками, выполненными либо цилиндрическими, либо в виде прямоугольного параллелепипеда), изготовленными из полупроводников соответственно р- и n-типа. Ветви ТЭ соединяются между собой посредством коммутационных пластин. Электрически последовательно соединенные коммутационными пластинами ТЭ, образующие ТЭБ, заключены между двумя высокотеплопроводными электроизоляционными пластинами - теплопереходами (обычно керамическими).

ТЭБ собрана таким образом, что горячие спаи N-го каскада ТЭ опираются на холодные спаи (N-1)-го каскада ТЭ. Горячие спаи (N-1)-го каскада ТЭ опираются на холодные спаи (N-2)-го каскада ТЭ и т.д. Горячие спаи первого каскада ТЭ приводятся в тепловой контакт с теплообменным устройством, а холодные спаи N-го каскада ТЭ сопрягаются с объектом охлаждения. При такой конструкции холодные спаи (1-го) каскада ТЭ снимают тепло с горячих спаев второго каскада, холодные спаи второго каскада ТЭ охлаждают горячие спаи третьего и т.д., а холодные спаи N-го каскада ТЭ охлаждают объект воздействия.

Недостатками известной конструкции являются недостаточная надежность работы каскадной ТЭБ, рассчитанной на большие токи питания, из-за значительных механических напряжений вследствие биметаллического эффекта; сложность ее технологической реализации; наличие значительных контактных электрических и тепловых сопротивлений.

Задачей, на решение которой направлено изобретение, является создание термоэлектрической батареи, лишенной указанных недостатков.

Техническим результатом, достигаемым при использовании изобретения, является повышение эффективности и надежности, а также упрощение технологии изготовления ТЭБ.

Решение поставленной задачи с достижением указанного технического результата обеспечивается тем, что в термоэлектрической батарее, состоящей из N каскадов термоэлементов, образованных последовательно соединенными в электрическую цепь посредством коммутационных пластин чередующимися ветвями, изготовленными из полупроводника соответственно р- и n-типа, при этом термоэлектрическая батарея собрана таким образом, что горячие контакты последующего каскада приводятся в тепловой контакт с холодными контактами предыдущего, где холодные контакты последнего (N-го) каскада сопряжены с объектом охлаждения, а горячие контакты первого каскада - с теплообменным устройством, в каскадах электрическое соединение ветвей р- и n-типа осуществляется посредством контакта ветвь р-типа - коммутационная пластина - ветвь n-типа, где ветвь р-типа контактирует торцевой поверхностью с одной из поверхностей коммутационной пластины, а ветвь n-типа - с противоположной, причем коммутационные пластины имеют площадь, несколько большую, чем площадь поперечного сечения ветвей р- и n-типа, вследствие чего их части выступают за поверхность структуры, образованной ветвями р- и n-типа, причем части коммутационных пластин, образующих холодные контакты, выступают за одну поверхность структуры, а части коммутационных пластин, образующих горячие контакты, - за другую, при этом тепловой контакт каскадов осуществляется за счет сопряжения коммутационных пластин, образующих горячие контакты, последующего каскада с коммутационными пластинами, образующими холодные контакты, предыдущего каскада через высокотеплопроводную диэлектрическую прослойку, за исключением крайних для каждого каскада коммутационных пластин, которые одновременно являются холодными контактами предыдущего каскада и горячими контактами последующего каскада, осуществляя их электрическое соединение.

Изобретение поясняется чертежом, где схематически изображена термоэлектрическая батарея.

ТЭБ содержит несколько (N) каскадов, каждый из которых состоит из последовательно соединенных в электрическую цепь посредством коммутационных пластин 1 и 2 чередующихся ветвей, изготовленных соответственно из полупроводника р-типа 3 и n-типа 4. Электрическое соединение ветвей осуществляется посредством контакта ветвь р-типа 3 - коммутационная пластина - ветвь n-типа 4, где ветвь р-типа 3 контактирует торцевой поверхностью к одной из поверхностей коммутационной пластины, а ветвь n-типа 4 - к противоположной, при этом ветви р- и n-типа расположены в одной перпендикулярной к коммутационной пластине плоскости. Коммутационные пластины 1 и 2 имеют площадь, несколько большую, чем площадь поперечного сечения ветвей р- и n-типа 3 и 4, вследствие чего их части выступают за поверхность структуры, образованной ветвями ТЭБ. При этом части коммутационных пластин 2, осуществляющих холодные контакты, выступают за одну поверхность структуры, а части коммутационных пластин 1, осуществляющих горячие контакты, - за другую (другие).

Электрический контакт между каскадами осуществляется через крайние коммутационные пластины 2 предыдущего каскада, одновременно являющиеся коммутационными пластинами 1 последующего каскада.

Тепловой контакт отдельных каскадов осуществляется посредством сопряжения коммутационных пластин 1 последующего каскада с коммутационными пластинами 2 предыдущего каскада через высокотеплопроводную диэлектрическую прослойку 5. При этом коммутационные пластины 1 N-го каскада сопрягаются с коммутационными пластинами 2 (N-1)-го каскада. Коммутационные пластины 1 (N-1)-го каскада сопрягаются с коммутационными пластинами 2 (N-2)-го каскада и т.д. С коммутационных пластин 1 первого каскада ТЭБ производится съем тепла в окружающую среду за счет естественного, либо принудительного теплообмена. Коммутационные пластины 2 N-го каскада сопрягаются тем или иным образом с объектом охлаждения.

ТЭБ работает следующим образом.

При прохождении через ТЭБ постоянного электрического тока, подаваемого от источника электрической энергии, между коммутационными пластинами 1 и 2 каждого каскада, представляющими собой контакты ветвей р-и n-типа 3 и 4, возникает разность температур, обусловленная выделением и поглощением теплоты Пельтье. При указанной на чертеже полярности электрического тока происходит нагрев коммутационных пластин 1 и охлаждение коммутационных пластин 2. Для каскадной ТЭБ холодные коммутационные пластины 2 первого каскада в этом случае снимают тепло с горячих коммутационных пластин 1 второго каскада, холодные коммутационные пластины 2 второго каскада охлаждают горячие коммутационные пластины 1 третьего каскада и т.д., а холодные коммутационные пластины 2 N-го каскада понижают температуру объекта воздействия. При этом тепло с горячих коммутационных пластин 1 первого каскада рассеивается в окружающую среду за счет естественного, либо принудительного теплообмена.

Основными преимуществами заявляемой конструкции ТЭБ являются:

1. Возможность сборки припоем одной температуры плавления, а не «ступенчатыми» припоями с различными температурами плавления и соответственно с различными теплофизическими и механическими свойствами.

2. Упрощение технологии изготовления.

3. Повышение надежности в работе за счет сведения к нулю биметаллических эффектов.

4. Обеспечение возможности изготовления каскадов батарей более 3-5 без осложнения конструкции и технологии их изготовления.

5. Возможность использования ветви различной длины, что дает возможность более точного согласования таких параметров, как оптимальный ток и перепад температур для каждой пары ветвей р- и n-типа, следствием чего является повышение энергетической эффективности ТЭБ.

6. Уменьшение толщины коммутационных пластин, следствием чего является значительное уменьшение их электрических сопротивлений и теплоемкостей, что дает возможность достигнуть более низких температур, а также уменьшает длительность выхода ТЭБ на рабочий режим.

7. Снижение материалоемкости - расхода материала полупроводников и коммутационных пластин.

ЛИТЕРАТУРА

1. Коленко Е.А. Термоэлектрические охлаждающие приборы. Л.: Наука, 1967.

Похожие патенты RU2282273C2

название год авторы номер документа
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2005
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2312428C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2004
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2280921C2
УСТРОЙСТВО ДЛЯ КРЕПЛЕНИЯ ДЕТАЛЕЙ МЕТОДОМ ПРИМОРАЖИВАНИЯ 2004
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2282280C2
УСТРОЙСТВО ДЛЯ КРЕПЛЕНИЯ ДЕТАЛЕЙ МЕТОДОМ ПРИМОРАЖИВАНИЯ 2004
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2282279C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2004
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2282277C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2003
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
  • Меркухин Николай Евгеньевич
RU2269183C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2004
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2282274C2
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 2004
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2282278C2
УСТРОЙСТВО ДЛЯ КРЕПЛЕНИЯ ДЕТАЛЕЙ МЕТОДОМ ПРИМОРАЖИВАНИЯ 2005
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
  • Менафов Ариф Менафович
RU2312427C2
СПОСОБ ОБЕСПЕЧЕНИЯ ФУНКЦИОНИРОВАНИЯ ТЕРМОЭЛЕКТРИЧЕСКОЙ БАТАРЕИ 2003
  • Исмаилов Тагир Абдурашидович
  • Вердиев Микаил Гаджимагомедович
  • Евдулов Олег Викторович
RU2270495C2

Реферат патента 2006 года ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям каскадных термоэлектрических батарей (ТЭБ). Технический результат: повышение эффективности и надежности, а также упрощение технологии изготовления каскадной ТЭБ. Сущность: ТЭБ содержит N каскадов, каждый из которых состоит из последовательно соединенных в электрическую цепь посредством коммутационных пластин чередующихся ветвей, изготовленных соответственно из полупроводника р-типа и n-типа. Электрическое соединение ветвей осуществляется посредством контакта ветвь р-типа - коммутационная пластина - ветвь n-типа, где ветвь р-типа контактирует торцевой поверхностью с одной из поверхностей коммутационной пластины, а ветвь n-типа - с противоположной. Коммутационные пластины имеют площадь, несколько большую, чем площадь поперечного сечения ветвей р- и n-типа, вследствие чего их части выступают за поверхность структуры, образованной ветвями ТЭБ. Части коммутационных пластин, образующих холодные контакты, выступают за одну поверхность структуры, а части коммутационных пластин, образующих горячие контакты, - за другую. Электрический контакт между каскадами осуществляется через крайние холодные коммутационные пластины предыдущего каскада, одновременно являющиеся горячими коммутационными пластинами последующего каскада. Тепловой контакт отдельных каскадов осуществляется посредством сопряжения коммутационных пластин последующего каскада с коммутационными пластинами предыдущего каскада через высокотеплопроводную диэлектрическую прослойку. С горячих коммутационных пластин первого каскада производится съем тепла в окружающую среду. Холодные коммутационные пластины N-го каскада сопрягаются с объектом охлаждения. 1 ил.

Формула изобретения RU 2 282 273 C2

Термоэлектрическая батарея, состоящая из нескольких (N) каскадов термоэлементов, образованных последовательно соединенными в электрическую цепь посредством коммутационных пластин чередующимися ветвями, изготовленными из полупроводника соответственно р- и n-типа, при этом термоэлектрическая батарея собрана таким образом, что горячие контакты последующего каскада приводятся в тепловой контакт с холодными контактами предыдущего, где холодные контакты последнего (N-го) каскада сопряжены с объектом охлаждения, а горячие контакты первого каскада - с теплообменным устройством, отличающаяся тем, что в каскадах электрическое соединение ветвей р- и n-типа осуществляется посредством контакта ветвь р-типа - коммутационная пластина - ветвь n-типа, где ветвь р-типа контактирует торцевой поверхностью с одной из поверхностей коммутационной пластины, а ветвь n-типа - с противоположной, причем коммутационные пластины имеют площадь, несколько большую, чем площадь поперечного сечения ветвей р- и n-типа, вследствие чего их части выступают за поверхность структуры, образованной ветвями р- и n-типа, причем части коммутационных пластин, образующих холодные контакты, выступают за одну поверхность структуры, а части коммутационных пластин, образующих горячие контакты, - за другую, при этом тепловой контакт каскадов осуществляется за счет сопряжения коммутационных пластин, образующих горячие контакты, последующего каскада с коммутационными пластинами, образующими холодные контакты, предыдущего каскада через высокотеплопроводную диэлектрическую прослойку, за исключением крайних для каждого каскада коммутационных пластин, которые одновременно являются холодными контактами предыдущего каскада и горячими контактами последующего каскада, осуществляя их электрическое соединение.

Документы, цитированные в отчете о поиске Патент 2006 года RU2282273C2

Вайнер А.Л
Каскадные термоэлектрические источники холода
- М.: Советское радио, 1976, с.54-56
ТЕРМОЭЛЕКТРИЧЕСКИЙ ЭЛЕМЕНТ, БАТАРЕЯ ТЕРМОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТОВ И СПОСОБ ИХ ИЗГОТОВЛЕНИЯ 1993
  • Лидоренко Николай Степанович
RU2010396C1
ТЕРМОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ 1996
  • Захарцев Ю.В.
RU2098889C1
US 5038569 A, 13.08.1991.

RU 2 282 273 C2

Авторы

Исмаилов Тагир Абдурашидович

Вердиев Микаил Гаджимагомедович

Евдулов Олег Викторович

Даты

2006-08-20Публикация

2004-06-18Подача