Предлагаемое изобретение относится к области гелиоэнергетики и может быть использовано в гелиоустановках специального назначения для обеззараживания питьевой воды.
Известны способы обеззараживания жидкости, основанные на формировании потока жидкости с последующим воздействием на него излучением УФ-диапазона волн.
Установки для реализации известных способов содержат камеру для создания потока жидкости и источники УФ-излучения в виде импульсных ламп, см., например, а.с. СССР №276813, МПК C 02 F 3/00, а.с. СССР №981238, МПК C 02 F 1/32.
Недостатком приведенных технических решений является отсутствие автономности в связи с необходимостью наличия внешних источников питания для накачки импульсных ламп, формирующих поток УФ-излучения.
Наиболее близким техническим решением (прототипом) к предлагаемому изобретению является способ обеззараживания жидкости, основанный на выделении из принимаемого светового потока солнечной энергии компоненты излучения УФ-диапазона волн и концентрации выделенной компоненты излучения УФ-диапазона волн для ее воздействия на формируемый поток обеззараживаемой жидкости, см. научно-технический межотраслевой журнал «Интеграл», №2 (22), март-апрель 2005 г., стр.9-12, фото 9 (заявка №2004105121 от 25.02.2004 г., МПК F 24 J 2/14, 2/18, положительное решение о выдаче патента от 1.03.2005 г.).
Гелиоэнергетическая установка для обеззараживания жидкости содержит концентратор излучения УФ-диапазона волн и кювету для прохода потока обеззараживаемой жидкости с прозрачным окном для подачи сконцентрированного излучения на вышеуказанный поток.
Недостатком данного технического решения является повышенная сложность реализации, связанная с конструктивными особенностями установки, и неудобство в обслуживании и эксплуатации, обусловленные расположением основных функциональных узлов перед отражающей поверхностью концентратора УФ-излучения.
Технический результат от использования предлагаемого технического решения заключается в упрощении процесса реализации предлагаемого способа и обеспечении удобства эксплуатации и обслуживания установки.
В соответствии с предлагаемым изобретением указанный технический результат достигается тем, что в способе обеззараживания жидкости, основанном на выделении из принимаемого светового потока солнечной энергии компоненты излучения УФ-диапазона волн и концентрации выделенной компоненты излучения УФ-диапазона волн для ее воздействия на формируемый поток обеззараживаемой жидкости, выделенную компоненту излучения УФ-диапазона волн преобразуют в сходящийся пучок клиновидной формы в направлении его распространения, а поток обеззараживаемой жидкости формируют с поперечным сечением, вытянутым вдоль кромки вершины вышеуказанного пучка клиновидной формы.
Гелиоэнергетическая установка для обеззараживания жидкости, содержащая концентратор излучения УФ-диапазона волн и кювету для прохода потока обеззараживаемой жидкости с прозрачным окном для подачи сконцентрированного излучения на вышеуказанный поток, дополнительно содержит формирователь параллельного пучка УФ-излучения в виде выпуклого зеркального элемента, смонтированного в фокальной области концентратора, и цилиндрическую положительную линзу, установленную за тыльной стороной концентратора, при этом цилиндрическая фокусирующая линза через центральное отверстие, предусмотренное в концентраторе, и формирователь параллельного пучка УФ-излучения оптически сопряжена с отражающей поверхностью концентратора, кювета размещена в области фокальной линии цилиндрической фокусирующей линзы, а ее полость выполнена с поперечным сечением, сужающимся от средней части к периферии.
На фиг.1 представлена схема гелиоэнергетической установки для реализации предлагаемого способа, на фиг.2 - то же, вид - А на фиг.1 в увеличенном масштабе.
Установка включает в себя концентратор 1 излучения УФ-диапазона волн, выполненный, например, на базе параболического зеркала с многослойным интерференционным покрытием рабочей поверхности, формирователь параллельного пучка УФ-излучения в виде выпуклого зеркала 2, смонтированный в фокальной области (перед фокусом) концентратора 1, цилиндрическую положительную линзу 3, установленную за тыльной стороной концентратора 1 напротив его центрального отверстия 4, и кювету 5 с прозрачным окном 6, размещенную в области фокальной линии линзы 3. Поперечное сечение полости кюветы 5 для обеспечения одинаковой степени облучения обеззараживаемой жидкости 7 выполнено сужающимся от его средней части к периферии (см. фиг.2, кривая 8).
Реализация предлагаемого способа согласно приведенной схеме осуществляется следующим образом.
При работе установки осуществляют ориентацию концентратора 1 в направлении удаленного источника электромагнитной энергии, например Солнца (см. фиг.1). Поток солнечной энергии при отражении от рабочей поверхности концентратора 1 селектируется, и его часть в виде компоненты излучения УФ-диапазона волн подается на зеркало 2, для формирования параллельного пучка Уф-излучения круглого сечения (см. поз.9 на фиг.1). Параллельный пучок Уф-излучения проходит через центральное отверстие 4 концентратора 1 и с помощью цилиндрической положительной линзы 3 преобразуется в сходящийся пучок 10 клиновидной формы в направлении его распространения.
Пучок 10 через прозрачное окно 6 кюветы 5, расположенной в области фокальной линии линзы 3, подают на поток обеззараживаемой жидкости 7, который формируют вытянутым в поперечном сечении вдоль кромки вершины клиновидного пучка 10. Ввиду неравномерности распределения плотности Уф-излучения по поперечному сечению пучка 10 (кривая 1 на фиг.2), с целью получения одинаковой дозы облучения, получаемой обеззараживаемой жидкостью 7 по всему поперечному сечению ее потока, полость кюветы 5 для прохода жидкости 7 в поперечном сечении выполнена сужающейся от ее средней части к периферии (кривая 8 на фиг.2).
Подачу жидкости 7 в кювету 5 для ее обеззараживания осуществляют с помощью гидронасоса или самотеком из емкости, расположенной выше уровня кюветы 5 (в графических материалах условно не показано). При проходе через полость кюветы 5 жидкости 7, за счет воздействия на последнюю УФ-излучения высокой плотности, осуществляется бактерицидное воздействие, обеспечивающее высокую степень обеззараживания жидкости 7. После процесса обеззараживания жидкость 7 подают в емкость для ее сбора (в графических материалах условно не показано).
Из вышеприведенного следует, что предложенное техническое решение имеет преимущества по сравнению с известным, за счет расположения основных функциональных узлов за тыльной стороной концентратора упрощается процесс реализации и повышается удобство обслуживания и эксплуатации изделия.
Следовательно, предложенное техническое решение при использовании дает технический результат, заключающийся в упрощении процесса реализации способа и повышении удобства эксплуатации и обслуживания изделия.
По материалам заявки на предприятии в настоящее время изготовлен макетный образец установки, который при испытаниях подтвердил достижение вышеуказанного технического результата.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОБЕЗЗАРАЖИВАНИЯ ЖИДКОСТИ И ГЕЛИОЭНЕРГЕТИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2289763C1 |
ГЕЛИОЭНЕРГЕТИЧЕСКИЙ МОДУЛЬ ДЛЯ ПРЕОБРАЗОВАНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ОТ УДАЛЕННОГО ИСТОЧНИКА СВЕТОВОГО ИЗЛУЧЕНИЯ (ВАРИАНТЫ) | 2005 |
|
RU2301379C2 |
ГЕЛИОУСТАНОВКА | 2006 |
|
RU2325597C2 |
ЛАЗЕРНО-ПЛАЗМЕННЫЙ ИСТОЧНИК ИОНОВ И ИЗЛУЧЕНИЯ | 2003 |
|
RU2250530C2 |
ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ | 2018 |
|
RU2686123C1 |
ГЕЛИОЭНЕРГЕТИЧЕСКИЙ МОДУЛЬ | 2001 |
|
RU2210039C2 |
ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ | 2018 |
|
RU2684685C1 |
МОЩНЫЙ КОНЦЕНТРАТОРНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ МОДУЛЬ | 2020 |
|
RU2740738C1 |
АВТОНОМНАЯ ЭНЕРГОЭФФЕКТИВНАЯ СОЛНЕЧНАЯ ВАРОЧНАЯ ПЕЧЬ | 2013 |
|
RU2545174C2 |
СПОСОБ ПРЕОБРАЗОВАНИЯ СВЕТОВОГО ИЗЛУЧЕНИЯ ОТ УДАЛЕННОГО ОБЪЕКТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2334305C1 |
Изобретение относится к области гелиоэнергетики и может быть использовано в гелиоустановках специального назначения для обеззараживания питьевой воды. Способ обеззараживания жидкости основан на выделении из принимаемого светового потока солнечной энергии компоненты излучения УФ-диапазона волн и концентрации выделенной компоненты излучения УФ-диапазона волн для ее воздействия на формируемый поток обеззараживаемой жидкости, при этом выделенную компоненту излучения УФ-диапазона волн преобразуют в сходящийся пучок клиновидной формы в направлении его распространения, а поток обеззараживаемой жидкости формируют с поперечным сечением, вытянутым вдоль кромки вершины вышеуказанного пучка клиновидной формы. Гелиоэнергетическая установка для обеззараживания жидкости содержит концентратор излучения УФ-диапазона волн, кювету для прохода потока обеззараживаемой жидкости с прозрачным окном для подачи сконцентрированного излучения на вышеуказанный поток, формирователь параллельного пучка УФ-излучения в виде выпуклого зеркального элемента, смонтированного перед фокальной областью концентратора, и цилиндрическую положительную линзу, установленную за тыльной стороной концентратора, при этом цилиндрическая фокусирующая линза через центральное отверстие, предусмотренное в концентраторе, и формирователь параллельного пучка УФ-излучения оптически сопряжена с отражающей поверхностью концентратора, кювета размещена в области фокальной линии цилиндрической фокусирующей линзы, а ее полость выполнена с поперечным сечением, сужающимся от средней части к периферии. Технический результат при использовании изобретения заключается в упрощении процесса реализации способа обеззараживания жидкости и повышении удобства эксплуатации и обслуживания установки. 2 н.п. ф-лы, 2 ил.
ГЕЛИОУСТАНОВКА | 2001 |
|
RU2210038C2 |
Устройство для стерилизации потока жидкости ультрафиолетовыми лучами | 1980 |
|
SU981238A1 |
СОЛНЕЧНАЯ УСТАНОВКА | 1993 |
|
RU2044226C1 |
US 3182193 A, 04.05.1965 | |||
СПОСОБ ЭНДОВАСКУЛЯРНОГО ЛЕЧЕНИЯ ХРОНИЧЕСКОГО ГЕМОРРОЯ | 2004 |
|
RU2268754C1 |
Авторы
Даты
2006-12-20—Публикация
2005-07-01—Подача