Изобретение относится к области неразрушающего контроля материалов и изделий радиационными методами и может быть использовано для их дефектоскопии в производственных и полевых условиях, а также для обнаружения опасных материалов на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д.
Известна портативная система обнаружения контрабанды CDS-2001, содержащая источник γ-излучения, детектор рассеянного γ-излучения, усилитель сигналов детектора, селектор амплитуд импульсов рассеянного γ-излучения, микропроцессорный контроллер и дисплей.
Портативная система обнаружения контрабанды CDS-2001. Инструкция по эксплуатации, 1998 г.
Источник γ-излучения имеет большую мощность, что создает опасность для персонала. Система не может быть использована при рабочих температурах ниже 0°С.
Известно устройство для анализа многокомпонентных материалов, которое содержит источник γ-излучения, детектор γ-излучения, усилитель, дискриминатор, контроллер и дисплей. Исследуемый образец помещается между источником и детектором.
Патент Великобритании №2088050, G 01 N 23/08, 1998 г.
Недостатком изобретения является низкая стабильность измерений.
Известно устройство для обнаружения контрабанды, содержащее полиэнергетический источник γ-излучения, спектрометрический детектор γ-излучения, усилитель сигналов детектора, амплитудно-цифровой преобразователь, контроллер и компаратор интенсивности импульсов в избранных энергетических областях (селектор импульсов отраженного γ-излучения) и дисплей.
Патент Российской Федерации №2161299, МПК: G 01 N 23/08, 2000 г.
Детектор, реагируя на наличие за экраном присоединенной массы (контрабанды), не позволяет судить о характере скрытого материала.
Интенсивность регистрируемого при этом отраженного γ-излучения зависит не только от плотности материала закладки, но и от геометрических размеров скрытой закладки.
Известен детектор нейтронов, содержащий волоконный модуль, собранный из слоев полимерных сцинтиллирующих оптических волокон, уложенных попеременно в двух взаимно перпендикулярных направлениях, и электронно-оптическую систему регистрации оптического излучения, выходящего из торцов этих волокон, электронно-оптическая система содержит фотоприемники.
Патент США №4942302, МПК: G 01 Т 3/06, 1990 г.
Указанное устройство имеет низкую эффективность, т.к. сцинтиллирующие оптические волокна выполнены с квадратным сечением, окружены алюминиевыми прокладками.
Известен детектор нейтронов, содержащий волоконный модуль, собранный из слоев полимерных сцинтиллирующих оптических волокон, уложенных попеременно в двух взаимно перпендикулярных направлениях, и электронно-оптическую систему регистрации оптического излучения, выходящего из торцов этих волокон. Торцы волокон расположены в плоскостях граней волоконного параллелепипеда, образуемого слоями волокон, а электронно-оптическая система выполнена в виде позиционно-чувствительных фотоприемников, оптически сопряженных с соответствующими гранями волоконного параллелепипеда.
Диаметр волокон равен половине длины свободного пробега протона отдачи в материале волокна.
Электронно-оптическая система содержит локальные подсистемы, в которые введены полупрозрачные пластины для ответвления оптической мощности на быстродействующие приемники.
Патент Российской Федерации №2119178, МПК: G 01 Т 3/06, Пономарев-Степной Н.Н., Тарабрин Ю.А., Яковлев Г.В., Бюл. №26, 1998 г. Прототип.
Прототип сложен для реализации, имеет сравнительно низкую эффективность, низкое пространственное разрешение, предназначен для регистрации только быстрых нейтронов, в частности одиночных.
Техническим результатом изобретения является повышение пространственного разрешения, расширение функциональных возможностей детектора, одновременная регистрация различных видов проникающего излучения: быстрых нейтронов, и/или тепловых нейтронов, и/или рентгеновских и гамма лучей.
Технический результат достигается тем, что в детекторе проникающих излучений, содержащем волоконный модуль, собранный из сцинтиллирующих оптических волокон и оптическую систему регистрации излучения, выходящего из торцов этих волокон, волоконный модуль выполнен в виде комбинированного люминесцентного экрана-преобразователя, сцинтиллирующие волокна которого составлены из последовательно соединенных отрезков различных типов сцинтиллирующих материалов, а оптическая система содержит отклоняющее зеркало и не менее двух оптических каналов, выполненных в виде последовательно расположенных вдоль оси канала входного проекционного объектива со светофильтром, усилителя изображения, масштабирующего объектива, с которого световой поток попадает на ПЗС-матрицу.
Сцинтиллирующие волокна экрана-преобразователя покрыты слоем люминофора. Сцинтиллирующие волокна выполнены в виде усеченного конуса или усеченной прямой пирамиды.
Сущность изобретения поясняется на чертеже, на котором представлена оптическая схема регистрации проникающих излучений для конусного пучка, где: 1 - ПЗС-матрица, 2 - масштабирующий объектив, 3 - усилитель изображения, 4 - проекционный объектив со светофильтром, 5 - комбинированный люминесцентный экран-преобразователь, 6 - отклоняющее зеркало.
Детектор излучения эффективен для осуществления радиографии как в коническом пучке быстрых нейтронов, так и в случае комбинированного излучения. При облучении комбинированного экрана-преобразователя 2 потоком быстрых нейтронов и/или рентгеновского излучения происходит преобразование нейтронного и/или рентгеновского излучения в световое излучение.
Работа устройства основана на использовании комбинированного люминесцентного экрана-преобразователя 5, преобразовании разных падающих видов излучения в самостоятельные световые потоки различного спектрального состава, их разделении отклоняющим зеркалом 6. Отклоняющим зеркалом 6 разделяют и направляют световые потоки на проекционные объективы 4 с соответствующими светофильтрами по каналам каждого вида излучения. Затем световой поток попадает на усилитель изображения 3 и далее с помощью масштабирующего объектива 2 на ПЗС-матрицу 1. Принцип работы детектора излучений основан на том, что изображения формируются в различных областях оптического спектра с помощью комбинированного композитного люминесцентного экрана-преобразователя 5.
Для обеспечения плотной упаковки волокон в экране-преобразователе 5 сечение волокна должно быть квадратным. Величина сечения определяется с учетом размера экрана (150×150), количества элементов ПЗС-матрицы 1 (560×768), а также пространственного разрешения детектора (примерно 1,5 толщины волокна). Для указанных размеров сечение волокна должно составлять около 1×1 мм2.
Прямоугольное сечение волокон обеспечивает достаточно высокую (примерно, 90%) плотность их упаковки в экране-преобразователе 5. В случае конических волокон плотность их упаковки ниже. Ниже оказывается и эффективность регистрации. Волокна экрана-преобразователя 5 изготовлены из полистирола и имеют светоотражающую оболочку. Светоотражающая оболочка может быть выполнена в виде тонкого слоя серебристой краски. Наличие оболочки обеспечивает полное внутреннее отражение световой вспышки при ее распространении вдоль волокна.
Макетный образец детектора нейтронов имеет экран-преобразователь 5 с входным сечением 150×150 мм и выходным сечением около 200×200 мм. Протяженность экрана-преобразователя 5 составляет 100 мм. Оптическое изображение, возникающее в экране-преобразователе 5 в результате облучения быстрыми нейтронами, переносится по волокнам на поверхность, обращенную в сторону проекционного объектива 5, а затем с его помощью - на усилитель изображения 6 и далее с помощью масштабирующего объектива 7 на ПЗС-матрицу 8.
Для регистрации быстрых нейтронов обычно используют полимерные оптические волокна, в частности из люминесцирующего полистирола.
При регистрации тепловых нейтронов - из люминесцирующего полистирола с добавками бора. При регистрации рентгеновского и гамма излучений оптические волокна выполняют из прозрачных сцинтилляторов, предназначенных для регистрации этих видов излучения: германат висмута, иттриевый гранат и др.
В нашем случае волокна из люминесцирующего полистирола покрыты люминофорами известных светосоставов для соответствующих видов излучений.
Для регистрации тепловых нейтронов использованы отрезки сцинтиллирующих волокон со светосоставами: 6LiF ZnS:Ag или Gd2O2S:Tb, или 157Gd2O2S:Tb, или 10BZnS:Ag.
В случае использования светосостава 6LiF ZnS:Ag ядро изотопа лития захватывает тепловой нейтрон и излучает тритон и альфа частицы, которые и вызывают сцинтилляционное свечение сульфида цинка.
В случае использования светосостава Gd2O2S:Tb или 157Gd2O2S:Tb ядро 157Gd захватывает нейтрон и излучает конверсионный электрон, который возбуждает сцинтилляционное свечение в светосоставе. Для регистрации рентгеновских и гамма квантов использован светосостав Gd2O2S:Tb. В таком светосоставе под действием рентгеновских и гамма квантов возникают заряженные частицы: электроны и позитроны, которые и вызывают сцинтилляционное свечение Gd2O2S:Tb.
Для того чтобы экран-преобразователь 5 был максимально эффективен, осевые линии волокон должны пересекаться в одной точке, а именно в центре, где будет расположен источник излучения, а каждое волокно должно быть в виде усеченного конуса или усеченной прямой пирамиды. В последнем случае плотность упаковки волокон в экране-преобразователе 5 составит 90%. При выходном сечении волокна 1×1 мм2 входное сечение волокна должно составлять 0,8×0,8 мм2.
Избирательность регистрации того или иного изображения обеспечивается соответствующими светофильтрами, установленными на проекционные объективы 4 в каждом канале.
название | год | авторы | номер документа |
---|---|---|---|
ЭКРАН-ПРЕОБРАЗОВАТЕЛЬ | 2005 |
|
RU2290667C1 |
ДЕТЕКТОР ПРОНИКАЮЩИХ ИЗЛУЧЕНИЙ | 2005 |
|
RU2290664C1 |
УСТРОЙСТВО ДЛЯ РАДИОГРАФИИ И ТОМОГРАФИИ | 2005 |
|
RU2288466C1 |
ЭКРАН-ПРЕОБРАЗОВАТЕЛЬ ПРОНИКАЮЩИХ ИЗЛУЧЕНИЙ | 2005 |
|
RU2290665C1 |
ДЕТЕКТОР ПРОНИКАЮЩИХ ИЗЛУЧЕНИЙ | 2005 |
|
RU2288467C1 |
СПОСОБ РАДИОГРАФИИ ОБЪЕКТОВ | 2005 |
|
RU2290627C1 |
УСТРОЙСТВО ДЛЯ РАДИОГРАФИИ И ТОМОГРАФИИ | 2005 |
|
RU2288465C1 |
ПРЕОБРАЗОВАТЕЛЬ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ | 2006 |
|
RU2309398C1 |
КОНТЕЙНЕР | 2006 |
|
RU2310831C1 |
ПРИЗМАТИЧЕСКИЙ ДЕТЕКТОР | 2009 |
|
RU2386148C1 |
Изобретение относится к области неразрушающего контроля материалов и изделий радиационными методами и может быть использовано для их дефектоскопии в производственных и полевых условиях, а также для обнаружения опасных материалов на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах. Техническим результатом изобретения является повышение пространственного разрешения, расширение функциональных возможностей детектора, одновременная регистрация различных видов проникающего излучения: быстрых нейтронов, и/или тепловых нейтронов, и/или рентгеновских и гамма лучей. Сущность изобретения: в детекторе проникающих излучений волоконный модуль выполнен в виде комбинированного люминесцентного экрана-преобразователя, сцинтиллирующие волокна которого составлены из последовательно соединенных отрезков различных типов сцинтиллирующих материалов, волокна покрыты слоем люминофора и выполнены в виде усеченного конуса или усеченной прямой пирамиды. Содержит не менее двух оптических каналов, выполненных в виде последовательно расположенных входного проекционного объектива со светофильтром, усилителя изображения, масштабирующего объектива и ПЗС-матрицы. 2 з.п. ф-лы, 1 ил.
НЕЙТРОННЫЙ ДЕТЕКТОР | 1997 |
|
RU2119178C1 |
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ КОНТРАБАНДЫ | 1999 |
|
RU2161299C2 |
СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР | 2000 |
|
RU2190240C2 |
RU 2066463 C1, 10.09.1996 | |||
US 4942302 A, 17.07.1990 | |||
US 4415810 A, 15.11.1983 | |||
WO 8504959 A, 07.11.1985. |
Авторы
Даты
2006-12-27—Публикация
2005-04-15—Подача