Изобретение относится к технике кондиционирования воздуха и вентиляции и может быть использовано для создания комфортных условий микроклимата в бытовых, административных и производственных помещениях.
Наиболее близким техническим решением к заявляемому объекту является система кондиционирования по патенту РФ №2031319, кл. F 24 F 5/00, от 27.04.92 (прототип), содержащая кондиционер с последовательно расположенными теплообменниками, вентилятор, аппарат испарительного охлаждения и вентиляторную градирню.
Недостатком его является сравнительно невысокая эффективность процесса тепловлажностной обработки воздуха в зимний период времени.
Технический результат - повышение эффективности и надежности тепловлажностной обработки воздуха в зимний период времени.
Это достигается тем, что в системе кондиционирования с теплообменными аппаратами, содержащей последовательно установленные на притоке теплообменники, камеру смешения наружного рециркуляционного воздуха, камеру орошения, вентилятор, датчик контроля энтальпии приточного воздуха, воздушный клапан регулирования поступления рециркуляционного воздуха, вентили сезонного переключения, насос нагретой воды, насос охлажденной испарением воды, градирню, соединительные трубопроводы, водяной теплообменник для использования сбросной теплоты технологической воды и автоматический вентиль регулирования расхода охлажденной воды, камера орошения выполнена в виде роторного тепломассообменника и содержит входной и выходной патрубки, расположенные в корпусе, закрепленные на валу вращающиеся диски, нижняя часть которых находится в поддоне с водой, причем диски скреплены между собой шпильками через шайбы и выполнены из хорошо смачиваемого материала толщиной 0,5...1 мм, а вал с дисками вращается по ходу воздуха с частотой 4...24 мин-1 от двигателя, причем диски по форме могут быть выполнены гофрированными или плоскими, в корпусе расположены защитные козырьки для уменьшения каплеуноса, а поддон с жидкостью связан с трубопроводом с шаровым клапаном и переливным трубопроводом.
На фиг.1 изображена принципиальная схема системы кондиционирования с теплообменными аппаратами, на фиг.2 - общий вид роторного тепломассообменника, фиг.3 - вид сверху фиг.2.
Система кондиционирования с теплообменными аппаратами (фиг.1) содержит последовательно установленные на притоке теплообменники 1, камеру смешения 2 наружного рециркуляционного воздуха, камеру орошения 3 в вида роторного тепломассообменника, вентилятор 4, датчик 5 контроля энтальпии приточного воздуха, воздушный клапан 6 регулирования поступления рециркуляционного воздуха, вентили 7 сезонного переключения, насос нагретой воды 8, насос 9 охлажденной испарением воды, градирню 10, соединительные трубопроводы 11, водяной теплообменник 12 для использования сбросной теплоты технологической воды, автоматический вентиль 13 регулирования расхода охлажденной воды, регулируемый приточный клапан 14.
Роторный тепломассообменник, представляющий собой камеру орошения, содержит входной патрубок 21 в корпусе 20 (фиг.3 и фиг.4), закрепленные на валу 23 вращающиеся диски 15, выходной патрубок 22. Нижняя часть дисков 15 находится в поддоне 16 с водой. Диски 15 выполняются из хорошо смачиваемого материала (дюралюминия, пластмассы с шершавой обезжиренной поверхностью или др.) толщиной 0,5...1 мм. Вал 23 с дисками 15 вращается от двигателя 19; при меньшей частоте наблюдается неполное смачивание дисков 15, а при большей - срыв капель с поверхности дисков. По форме диски 15 могут быть выполнены гофрированными (фиг.4) для увеличения поверхности контакта тепломассообмена, причем гофры могут быть выполнены в форме многоугольника, синусоиды, полуокружности (на чертеже не показано). Между собой диски 15 скрепляются шпильками 25 с разделительными шайбами 26. В корпусе 20 расположены защитные козырьки 18 для уменьшения каплеуноса. В поддоне 16 закреплены горизонтальные пластины 29 и 30, а также с поддоном 16 связаны трубопровод с шаровым клапаном 27 и переливной трубопровод 28.
Система кондиционирования с теплообменными аппаратами работают следующим образом.
В приточном тракте устанавливаются теплообменники 1, в трубки которых подается вода после ее испарительного охлаждения а вентиляторной градирне 10. Теплообменники 1 связаны трубопроводами с вентиляторной градирней 10, смонтированной на кровле здания. В градирню осевым вентилятором засасывается наружный воздух с температурой по мокрому термометру, которая является пределом испарительного охлаждения воды. Температура охлажденной испарением воды всегда меньше температуры по мокрому термометру.
Охлажденная испарением вода забирается насосом 9 и по соединительным трубопроводам 11 подается в трубки теплообменника 1 в приточном аппарате кондиционера. При работе вентилятора 4 через теплообменники перемещается приточный наружный воздух.
Роторный тепломассообменник камеры орошения 3 работает так. Обрабатываемый воздух поступает в тепломассообменник через входной патрубок 21 в корпусе 20 в радиальном направлении к вращающимся дискам 15, проходит в щелевых каналах между ними и направляется к выходному патрубку 22. Нижняя часть дисков ротора находится в поддоне 16 с водой, поэтому при вращении ротора на поверхности дисков образуется тонкая пленка воды, с которой взаимодействует поток воздуха. Ротор вращается по ходу воздуха с частотой 4...24 мин-1, так как при меньшей частоте наблюдается неполное смачивание дисков, в при большей - срыв капель с поверхности дисков 15. При вращении ротора по ходу воздуха пленка воды растекается по поверхности дисков под действием потока воздуха и удерживается без срыва капель при скорости в живом сечении 11-17 м/с (в зависимости от размера зазора между дисками), причем с уменьшением зазора предельная скорость возрастает. При хорошем качестве изготовления и сборки ротор вращается с частотой 6...9 мин-1 под действием набегающего потока воздуха. Постоянный уровень воды в поддоне поддерживается за счет подпитки водопроводной водой из трубопровода 27. Насос для этого режима обработки вообще не требуется. При политропических процессах нагрева или охлаждения необходимо обеспечить подачу и удаление теплой или холодной воды из поддона с помощью насоса, однако требуемый напор насоса будет очень небольшим. Эффективность тепло- и масоообмена в режиме изоэнтальпийного достаточно велика, причем с увеличением зазора между дисками коэффициент эффективности уменьшается, а с увеличением диаметра возрастает. Это объясняется следующим: так, при увеличении зазора коэффициент эффективности действительно уменьшается, однако удельное количество явной теплоты, передаваемой от воздуха к воде с единицы площади поверхности дисков, возрастает, т.е. возрастает и коэффициент теплоотдачи, что объясняется увеличением турбулентности потока воздуха. При изменении диаметра дисков изменяются удельная площадь поверхности переноса, пропускная способность аппарата и его аэродинамическое сопротивление. Поэтому при выборе диаметра ротора и величины зазора между дисками необходимо выполнять технико-экономические расчеты. Для изменения режима тепловой обработки приточного воздуха в схеме предусмотрены переключающие вентили 7 на трубопроводах 11 и водяном теплообменнике 12 для нагрева сбросной теплотой рециркулирующей воды. Предложенная система кондиционирования с теплообменными аппаратами является по существу приточной системой, в которой теплообменники используются летом для косвенного испарительного охлаждения, а зимой для нагрева приточного воздуха, что позволяет эффективно использовать для нагрева приточного воздуха сбросные и дешевые низкотемпературные источники теплоты в виде технологической воды или обратной теплофикационной воды.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА КОНДИЦИОНИРОВАНИЯ С ТЕПЛООБМЕННЫМИ АППАРАТАМИ | 2006 |
|
RU2320934C1 |
СИСТЕМА КОНДИЦИОНИРОВАНИЯ С ТЕПЛООБМЕННЫМИ АППАРАТАМИ | 2010 |
|
RU2453774C2 |
СИСТЕМА КОНДИЦИОНИРОВАНИЯ С ТЕПЛООБМЕННЫМИ АППАРАТАМИ | 2015 |
|
RU2615252C1 |
СИСТЕМА КОНДИЦИОНИРОВАНИЯ С ТЕПЛООБМЕННЫМИ АППАРАТАМИ | 2017 |
|
RU2661472C1 |
СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА С КОМБИНИРОВАННЫМ КОСВЕННЫМ ОХЛАЖДЕНИЕМ | 2008 |
|
RU2349841C1 |
СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА С КОМБИНИРОВАННЫМ КОСВЕННЫМ ОХЛАЖДЕНИЕМ | 2010 |
|
RU2452901C2 |
СИСТЕМА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА С КОМБИНИРОВАННЫМ КОСВЕННЫМ ОХЛАЖДЕНИЕМ | 2018 |
|
RU2671691C1 |
СИСТЕМА КОНДИЦИОНИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ ЕСТЕСТВЕННОГО ХОЛОДА | 2005 |
|
RU2291355C2 |
ПРИТОЧНАЯ КАМЕРА КОНДИЦИОНЕРА С РОТОРНЫМ ТЕПЛОМАССООБМЕННИКОМ | 2005 |
|
RU2285867C1 |
СИСТЕМА ТЕХНОЛОГИЧЕСКОГО КОНДИЦИОНИРОВАНИЯ ВОЗДУХА ЦЕНТРА ОБРАБОТКИ ДАННЫХ | 2013 |
|
RU2554025C1 |
Система предназначена для кондиционирования и вентиляции воздуха и создания комфортных условий микроклимата в бытовых, административных и производственных помещениях. Система содержит последовательно установленные на притоке теплообменники, камеру смешения наружного рециркуляционного воздуха, камеру орошения, вентилятор, датчик контроля энтальпии приточного воздуха, воздушный клапан регулирования поступления рециркуляционного воздуха, вентили сезонного переключения, насос нагретой воды, насос охлажденной испарением воды, градирню, соединительные трубопроводы, водяной теплообменник для использования сбросной теплоты технологической воды и автоматический вентиль регулирования расхода охлажденной воды, камера орошения выполнена в виде роторного тепломассообменника и содержит входной и выходной патрубки, расположенные в корпусе, закрепленные на валу вращающиеся диски, нижняя часть которых находится в поддоне с водой, причем диски скреплены между собой шпильками через шайбы и выполнены из хорошо смачиваемого материала, а вал с дисками вращается по ходу воздуха от двигателя, причем диски по форме могут быть выполнены гофрированными. Технический результат - повышение эффективности и надежности тепловлажностной обработки воздуха в зимний период времени. 3 ил.
Система кондиционирования с теплообменными аппаратами, содержащая последовательно установленные на притоке теплообменники, камеру смешения наружного рециркуляционного воздуха, камеру орошения, вентилятор, датчик контроля энтальпии приточного воздуха, воздушный клапан регулирования поступления рециркуляционного воздуха, вентили сезонного переключения, насос нагретой воды, насос охлажденной испарением воды, градирню, соединительные трубопроводы, водяной теплообменник для использования сбросной теплоты технологической воды и автоматический вентиль регулирования расхода охлажденной воды, отличающаяся тем, что камера орошения выполнена в виде роторного тепломассообменника и содержит входной и выходной патрубки, расположенные в корпусе, закрепленные на валу вращающиеся диски, нижняя часть которых находится в поддоне с водой, причем диски скреплены между собой шпильками через шайбы и выполнены из хорошо смачиваемого материала, а вал с дисками вращается по ходу воздуха от двигателя; причем диски по форме могут быть выполнены гофрированными, а гофры по форме могут быть выполнены в форме многоугольника, синусоиды, полуокружности.
УСТАНОВКА КОНДИЦИОНИРОВАНИЯ ВОЗДУХА | 1992 |
|
RU2031319C1 |
Регенеративный теплообменник | 1984 |
|
SU1198366A1 |
Устройство для тепловлажностной обработки воздуха | 1983 |
|
SU1216576A1 |
US 3777806 А, 11.12.1973 | |||
GB 1444992 A, 04.08.1976. |
Авторы
Даты
2007-01-10—Публикация
2005-04-05—Подача