Изобретение относится к лазерной технике, в частности к импульсным твердотельным лазерным системам с генерацией высших гармоник излучения.
Импульсные лазеры с модуляцией добротности резонатора как генераторы мощных импульсов излучения в наносекундном диапазоне длительностей импульсов с частотами повторения до сотен герц в ближнем ИК, видимом и УФ-спектральных диапазонах широко применяются в научно-прикладных исследованиях, медицине, в системах экологического мониторинга окружающей среды.
В качестве лазеров ИК-диапазона обычно используются лазеры на неодимсодержащих кристаллах (АИГ:Nd, АИ:Nd и др.). Для генерации в видимом и УФ-диапазонах часто используется каскадное преобразование частоты излучения в высшие гармоники в нелинейных кристаллах, среди которых следует отметить кристаллы КТР, ВВО, LBO, обладающие высокой нелинейностью и высокой лучевой стойкостью.
Для дальнейшего развития и совершенствования некоторых научно-технических направлений, в частности, систем экологического мониторинга, использующих методы флуоресцентной спектроскопии для идентификации примесей и определения их концентрации в водной среде, необходимо применять многофункциональные лазерные системы. Такие лазерные системы для возбуждения объектов анализа должны генерировать импульсы излучения в видимом и УФ диапазонах, дискретно изменять не только частоту излучения, но и длительность импульсов в широких пределах (из наносекундного в субнаносекундный диапазон), а также плавно изменять мощность импульсов излучения на каждой длине волны без изменения других параметров, таких как длительность импульсов, диаметр пучка, расходимость.
В настоящее время генерация субнаносекундных импульсов достигается в микрочип-лазерах на АИГ:Nd с пассивным затвором из кристалла АИГ:Cr4+ с Диодной накачкой [1, 2]. Так как длина резонатора микрочип-лазера составляет несколько мм, длительность импульсов излучения в режиме модуляции добротности резонатора попадает в субнаносекундный диапазон 0,1...0,4 нс.
Наиболее близкой по технической сущности к предлагаемому изобретению является импульсная твердотельная лазерная система на основе микрочип-лазера с пассивным затвором из кристалла АИГ:Cr4+ с диодной накачкой, двухпроходовым усилителем и нелинейными элементами для преобразования частоты излучения в высшие гармоники [3].
Однако в этой лазерной системе отсутствует возможность дискретной перестройки частоты излучения и дискретной перестройки длительности импульсов в наносекундный диапазон. Для ряда научно-прикладных задач такая лазерная система будет ограничивать применение разработанных методик в силу своих узких характеристик. Необходимо будет использовать дополнительный лазер (или лазеры), что создает значительные затруднения в применении нескольких лазеров в составе единого экспериментального комплекса, а также повышает дороговизну этого комплекса. Создание многофункциональной лазерной системы может решить эти проблемы.
Задачей настоящего изобретения является создание лазерной системы, способной генерировать по одному направлению импульсы с дискретно перестраиваемой длительностью, с дискретно перестраиваемой частотой излучения и с плавно изменяемой мощностью.
Для решения поставленной задачи в импульсную твердотельную лазерную систему с генерацией высших гармоник излучения, содержащую микрочип-лазер с пассивным затвором из кристалла АИГ:Cr4+, с диодной накачкой, двухпроходовый усилитель и нелинейные элементы для преобразования частоты излучения в высшие гармоники, добавлен предусилитель, в оптическую схему которого введены с одной стороны активного элемента первое глухое зеркало, входной поляризатор, электрооптический элемент, 90-градусный вращатель плоскости поляризации, установленный на первом двухпозиционном перемещающем устройстве, призма, выходной поляризатор, поворотное зеркало, второе глухое зеркало, перекрытое первой секцией двухсекционного экрана, установленного на втором двухпозиционном устройстве, а с другой стороны от активного элемента введено третье глухое зеркало, обеспечивающее прохождение луча микрочип-лазера через активный элемент по траектории, подобной римской цифре V, в оптическую схему двухпроходового усилителя введен электрооптический элемент, в оптическую схему расположения нелинейных элементов для преобразования частоты излучения в высшие гармоники введены зеркала и дисперсионные призмы, в том числе зеркала и призмы на перемещающих устройствах, позволяющих при соответствующей коммутации включения обеспечивать прохождение луча в определенный нелинейный элемент для преобразования частоты излучения в высшую гармонику и последующую селекцию по единому для всех гармоник направлению, причем первое и второе перемещающие устройства расположены так, что при их одновременном выключении 90-градусный вращатель плоскости поляризации находится вне луча, первая секция двухсекционного экрана открывает второе глухое зеркало, образующее с первым и третьим глухими зеркалами оптический резонатор, а луч микрочип-лазера перекрыт второй секцией двухсекционного экрана.
При одновременном выключении перемещающих устройств предусилитель преобразуется в лазер, генерирующий импульсы излучения с длительностью в наносекундном диапазоне с сохранением прежнего направления распространения излучения. В лазерной системе появляется возможность плавного изменения мощности импульсов излучения, выходящего из усилителя, что позволяет плавно изменять мощность импульсов излучения высших гармоник. Появляется возможность дискретного переключения частоты излучения с сохранением единого направления выхода излучения из системы для всех гармоник.
Таким образом, предлагаемое устройство является многофункциональной лазерной системой, способной дискретно перестраиваться по длительности импульсов из субнаносекундного в наносекундный диапазон и по частоте излучения в видимом и УФ-спектральных диапазонах, а также плавно перестраиваться по мощности излучения.
На чертеже представлена оптическая схема предлагаемого устройства.
В оптической схеме лазерной системы расположены микрочип-лазер 1 из кристалла АИГ:Nd с пассивным затвором из кристалла АИГ:Cr4+ с диодной накачкой по оптоволокну, двухсекционный экран на перемещающем устройстве 2, поворотное зеркало 3, линза 4; предусилитель, состоящий из глухих зеркал 5-8, входного поляризатора 9, электрооптического элемента 10, 90-градусного вращателя плоскости поляризации на перемещающем устройстве 11, диафрагмы 12, поворотной призмы 13, активного элемента из АИГ:Nd 14, выходного поляризатора 15; усилитель, состоящий из входного поляризатора 16, 90-градусного вращателя плоскости поляризации 17, активного элемента из АИГ:Nd 18, выходного поляризатора 19, поворотного зеркала 20, телескопа 21, электрооптического элемента 22, поворотного зеркала 23; поворотные зеркала 24-25, вращатель плоскости поляризации 26, нелинейный кристалл КТР 27, поворотные зеркала 28-29 на селектирующем перемещающем устройстве 30, 90-градусный вращетель плоскости поляризации 31, нелинейные кристаллы ВВО 32-33, селектирующее перемещающее устройство 34, дисперсионная призма Пеллин-Брока 35, поворотное зеркало 36.
Предлагаемая лазерная система работает следующим образом.
Микрочип-лазер представляет собой излучатель из АИГ:Nd с пассивным затвором из АИГ:Cr4+ с диодной накачкой, работает в импульсно-периодическом режиме с частотой повторения от 1 до 100 Гц. Из-за малой длины резонатора длительность импульсов излучения попадает в субнаносекундный диапазон.
При параллельном включении первого и второго перемещающих устройств излучение микрочип-лазера (λ=1064 нм) проходит в оптическую схему предусилителя. За время импульса накачки через лампу двухпроходового предусилителя в элементе 14 возникает инверсная населенность, что приводит к эффекту усиления импульсов излучения микрочип-лазера.
Затем происходит дальнейшее усиление импульсов излучения в двухпроходовом усилителе кольцевого типа в элементе 18.
При подаче высокого напряжения на электроды электрооптического элемента 22 происходит деполяризация излучения на втором проходе с потерей части излучения, поляризованной горизонтально на входном поляризаторе 16. Тем самым достигается плавное изменение уровня энергии импульсов на втором входе в усилитель и, следовательно, плавное изменение уровня энергии импульсов на выходе усилителя.
При плавном изменении уровня энергии импульсов излучения реализуется также плавное изменение энергии импульсов излучения высших гармоник.
В оптической схеме преобразования частоты последовательно расположены нелинейные элементы КТР 27 для генерации излучения второй гармоники (λ=532 нм), ВВО 32, помещенный в термостат, для генерации излучения четвертой гармоники (λ=266 нм), ВВО 33 для генерации излучения третьей гармоники (λ=355 нм) и дисперсионные призмы и зеркала для дискретного переключения и селекции гармоник. При включенном селектирующем перемещающем устройстве 30 излучение первой гармоники преобразуется в элементе КТР 27 в излучение второй гармоники по второму типу взаимодействия и через параметрические зеркала 28-29, отражающие только вторую гармонику, выходит из излучателя. При выключенном устройстве 30 и включенном устройстве 34 преобразованное излучение второй гармоники попадает в элемент ВВО 32, где по первому типу взаимодействия преобразуется в четвертую гармонику, при этом после селекции из излучателя выходит только четвертая гармоника. При выключенных устройствах 30 и 34 с пульта управления одновременно выключается питание термостата элемента 32, при этом излучение второй гармоники проходит элемент ВВО 32, не преобразуясь в четвертую гармонику, и попадает в элемент ВВО 33, где генерируется излучение третьей гармоники по первому типу взаимодействия, и после селекции на призме 35 через зеркало 36 выходит из излучателя. Все лучи юстировкой сводятся в одном направлении.
При выключенных одновременно перемещающих устройствах 2 и 11 90-градусный вращатель плоскости поляризации выведен из оптического тракта, а двухсекционный экран перекрывает первой своей секцией луч микрочип-лазера, а вторая секция открывает оптический путь для глухого зеркала 6. Глухое зеркало 7 вместе с зеркалами 6 и 8 образуют трехзеркальный резонатор лазера, обеспечивающий прохождение генерации через активный элемент по траектории, подобной римской цифре V, совпадающей с траекторией, по которой идет излучение микрочип-лазера при включенных устройствах 2 и 11. Таким образом, появляется возможность генерировать импульсы с наносекундной длительностью и дискретно переключаться в субнаносекундный диапазон.
Результаты испытаний лазерной системы, представленные в таблице, подтверждают многофункциональность предложенного устройства.
Из таблицы видно, что предложенная импульсная твердотельная лазерная система способна дискретно перестраиваться по длительности импульсов излучения из субнаносекундного в наносекундный диапазон и переключаться по частоте излучения (2, 3 и 4 гармоники) в видимом и УФ-спектральных диапазонах, а также плавно перестраиваться по мощности импульсов излучения в каждом из шести режимов работы.
Данная лазерная система может применятся в комплексных научных исследованиях, в экологическом мониторинге и других научно-практических целях, так как заменяет собой сразу несколько лазеров.
Источники информации
1. J.Zayhowski, "Microchip lasers", Optical materials 11 (1999) р.255-267.
2. Е.Molva, "Microchip lasers and their applications in optical Microsystems", Optical materials 11 (1999) p.289-299.
3. Патент США №6373864, 2002 г. - прототип.
название | год | авторы | номер документа |
---|---|---|---|
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПЕРЕСТРОЙКОЙ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ | 1996 |
|
RU2101817C1 |
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР | 2008 |
|
RU2390891C1 |
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ ИЗЛУЧЕНИЯ В ВЫСШИЕ ГАРМОНИКИ | 1999 |
|
RU2162265C1 |
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР | 1994 |
|
RU2076413C1 |
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР | 1991 |
|
SU1829827A1 |
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ГЕНЕРАЦИЕЙ ВЫСШИХ ГАРМОНИК ИЗЛУЧЕНИЯ | 2006 |
|
RU2325021C1 |
Офтальмохирургическая рефракционная твердотельная лазерная система | 2018 |
|
RU2749346C1 |
ДВУХКАНАЛЬНАЯ ИМПУЛЬСНАЯ ТВЕРДОТЕЛЬНАЯ ЛАЗЕРНАЯ СИСТЕМА С ПЕРЕСТРОЙКОЙ ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ | 2004 |
|
RU2264012C1 |
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С КАСКАДНЫМ ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ ИЗЛУЧЕНИЯ В ВЫСШИЕ ГАРМОНИКИ | 2001 |
|
RU2206162C2 |
ОФТАЛЬМОЛОГИЧЕСКАЯ ХИРУРГИЧЕСКАЯ ЛАЗЕРНАЯ УСТАНОВКА | 2001 |
|
RU2209054C1 |
Изобретение относится к лазерной технике, а именно к импульсным твердотельным лазерным системам, работающим в субнаносекундном и наносекундном диапазоне длительностей импульсов с каскадным преобразованием частоты излучения в высшие гармоники в видимом и УФ-спектральных диапазонах. Лазерная система содержит микрочип-лазер с пассивным затвором из кристалла АИГ:Cr4+, двухпроходовый усилитель и нелинейные элементы для преобразования частоты излучения в высшие гармоники. Добавлен предусилитель. В оптическую схему предусилителя введены с одной стороны активного элемента первое глухое зеркало, входной поляризатор, электрооптический элемент, 90-градусный вращатель плоскости поляризации, установленный на первом двухпозиционном перемещающем устройстве, призма, выходной поляризатор, поворотное зеркало, второе глухое зеркало, перекрытое первой секцией двухсекционного экрана, третье глухое зеркало. В оптическую схему двухпроходового усилителя введен электрооптический элемент. Технический результат - создание лазерной системы, способной генерировать по одному направлению импульсы с дискретно перестраиваемой длительностью, с дискретно перестраиваемой частотой излучения и с плавно изменяющейся мощностью. 1 табл., 1 ил.
Импульсная твердотельная лазерная система с генерацией высших гармоник излучения, содержащая микрочип-лазер с пассивным затвором из кристалла АИГ:Cr4+, с диодной накачкой, двухпроходовый усилитель и нелинейные элементы для преобразования частоты излучения в высшие гармоники, отличающаяся тем, что в лазерную систему добавлен предусилитель, в оптическую схему которого введены с одной стороны активного элемента первое глухое зеркало, входной поляризатор, электрооптический элемент, 90-градусный вращатель плоскости поляризации, установленный на первом двухпозиционном перемещающем устройстве, призма, выходной поляризатор, поворотное зеркало, второе глухое зеркало, перекрытое первой секцией двухсекционного экрана, установленного на втором двухпозиционном устройстве, а с другой стороны от активного элемента введено третье глухое зеркало, обеспечивающее прохождение луча микрочип-лазера через активный элемент по траектории, подобной римской цифре V, в оптическую схему двухпроходового усилителя введен электрооптический элемент, в оптическую схему расположения нелинейных элементов для преобразования частоты излучения в высшие гармоники введены зеркала и дисперсионные призмы, в том числе зеркала и призмы на перемещающих устройствах, позволяющих при соответствующей коммутации включения обеспечивать прохождение луча в определенный нелинейный элемент для преобразования частоты излучения в высшую гармонику и последующую селекцию по единому для всех гармоник направлению, причем первое и второе перемещающие устройства расположены так, что при их одновременном выключении 90-градусный вращатель плоскости поляризации находится вне луча, первая секция двухсекционного экрана открывает второе глухое зеркало, образующее с первым и третьим глухими зеркалами оптический резонатор, а луч микрочип-лазера перекрыт второй секцией двухсекционного экрана.
US 6373864 A, 16.04.2002 | |||
Способ изготовления электрического изоляционного состава | 1924 |
|
SU2162A1 |
DE 19955599, 31.05.2000 | |||
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ ИЗЛУЧЕНИЯ В ВЫСШИЕ ГАРМОНИКИ | 1999 |
|
RU2162265C1 |
ИМПУЛЬСНЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕР С КАСКАДНЫМ ПРЕОБРАЗОВАНИЕМ ЧАСТОТЫ ИЗЛУЧЕНИЯ В ВЫСШИЕ ГАРМОНИКИ | 2001 |
|
RU2206162C2 |
Авторы
Даты
2007-01-10—Публикация
2005-10-05—Подача