Изобретение относится к машиностроению, к устройствам подавления механических колебаний роторных систем, и может быть использовано в качестве элемента демпфирующей нижней опоры быстровращающихся машин и приборов с вертикальной осью вращения, например, в накопителях энергии, ультрацентрифугах.
Совершенствование центрифужных технологий, неразрывно связано с ростом значений рабочих скоростей вращения роторов и увеличением числа их звеньев, что предполагает вращение роторов в закритической области. Следствием этих тенденций является появление дополнительных зон неустойчивости вращающегося ротора, которые характеризуются сложными совместными колебаниями его элементов одновременно и в радиальном и в аксиальном направлениях. Последнее обстоятельство приводит к увеличению ширины эксплуатационного частотного диапазона, внутри которого могут проявиться все свойственные данной системе проблемы с устойчивостью и, как следствие, к невозможности справиться с этими проблемами при помощи демпфирующих устройств, имеющих ограниченное количество собственных реализуемых степеней свободы.
Известен демпфер ротора центрифуги [патент R.U 2044936, F16F 9/10, 15/023, 03.07.1992], состоящий из подвижного цилиндра с подшипником для опирания ротора и центрирующими пружинами в верхней части, шарнирно опертый нижней частью в резервуаре, заполненном демпфирующей жидкостью. Демпфирование осуществляется за счет перемещения жидкости в зазоре между корпусом и цилиндром. Конструкция описанного демпфера позволяет подавлять низкочастотные радиальные колебания ротора при прохождении им «пусковых» частот и прецессионные колебания на рабочей скорости вращения.
Недостаток известной конструкции состоит в том, что конструкция демпфера обеспечивает демпфирование только в радиальном направлении и только в двух зонах частот, что не приемлемо для подавления колебаний многочастотных роторных систем.
Известен также демпфер для высокоскоростных роторов [патент ФРГ 2337190, F16F 15/02, 21.07.1973], состоящий из подвижного цилиндра в виде двухстороннего стакана, опертого нижней стороной дна на пружину, установленную в корпусе опоры, заполненном демпфирующей жидкостью и имеющем внутренний ответный стакан меньшего диаметра, с подшипником для опирания ротора, смонтированным в дне стакана, с его верхней стороны. Демпфирование осуществляется за счет перемещения жидкости в зазорах между стенками корпуса, стакана и цилиндра. Конструкция описанного демпфера позволяет проходить через 2-3 «критических» скорости при разгоне ротора до его рабочей скорости вращения.
Недостаток известной конструкции состоит в том, что, несмотря на упругое опирание подвижного стакана демпфера и расширенный частотный диапазон демпфера, демпфирование осуществляется в нем только в радиальном направлении, что не обеспечивает подавления сложных (радиальных и аксиальных) колебаний многочастотных роторных систем.
Наиболее близким к изобретению является демпфер [патент Великобритании 1570358, В04В 9/12, F16C 23/04, 02.07.1980], состоящий из подвижного цилиндра в виде двухстороннего стакана, с подшипником для опирания ротора, смонтированном в дне стакана с его верхней стороны, поддерживаемого с верхней стороны гибкой мембраной, имеющего с нижней стороны ферромагнитный диск, перпендикулярный его оси, периферийной частью находящейся в подковообразной полости кольцевого магнита, размещенного в проточке корпуса, опертого нижней стороной дна на гибкую иглу, допускающую перемещение цилиндра только в радиальном направлении, который установлен в полости, заполненной демпфирующей жидкостью, в корпусе опоры, имеющем внутренний ответный стакан меньшего диаметра. Демпфирование осуществляется в радиальном направлении за счет перемещения жидкости в зазорах между стенками корпуса, стакана и цилиндра, а также за счет электромагнитного взаимодействия ферромагнитного диска и магнита. Конструкция описанного демпфера позволяет проходить через «критические» скорости при разгоне ротора до его рабочей скорости вращения.
Недостаток известной конструкции состоит в том, что, несмотря на упругое опирание подвижного цилиндра демпфера и наличие диска, установленного перпендикулярно цилиндру и размещенного в кольцевой проточке в полости, заполненной демпфирующей жидкостью, демпфирование в нем также осуществляется только в радиальном направлении, что не обеспечивает подавления сложных колебаний многочастотных роторных систем - одновременно радиальных и аксиальных.
Настоящее изобретение направлено на увеличение общей эффективности демпфирования и расширение частотного диапазона эффективного демпфирования в радиальном направлении, и на реализацию дополнительного демпфирования в аксиальном направлении.
Эта задача решается за счет того, что в демпфере вертикального ротора, содержащем корпус, установленный в его полости, заполненной демпфирующей жидкостью, основной подвижный элемент в виде тела вращения, снабженный, по крайней мере, одним дополнительным демпфирующим элементом, подшипник для опирания ротора и центрирующие пружины, закрепленные в верхней части основного подвижного элемента, который шарнирно оперт своей нижней частью через опорную иглу и подпятник на упругий элемент основного подвижного элемента, по меньшей мере, один дополнительный демпфирующий элемент присоединен в кольцевой проточке основного подвижного элемента и расположен с демпфирующими зазорами в кольцевой проточке корпуса.
Кроме того, в демпфере вертикального ротора упругий элемент подвижного элемента демпфера может быть выполнен в виде, по крайней мере, одного гибкого диска, закрепленного по контуру в корпусе демпфера.
Кроме того, по меньшей мере один дополнительный демпфирующий элемент может быть выполнен в виде кольца, присоединенного к основному подвижному элементу через упругий элемент подвески.
Кроме того, по меньшей мере, один дополнительный демпфирующий элемент демпфера выполнен в виде диска, перпендикулярного к оси основного подвижного элемента. Кроме того, дополнительные демпфирующие элементы демпфера расположены вблизи торцев основного подвижного элемента.
Кроме того, дополнительные демпфирующие элементы выполнены в виде колец, имеющих одинаковую или различную жесткость упругих элементов подвески.
Кроме того, дополнительные демпфирующие элементы выполнены в виде дисков, имеющих одинаковую или различную изгибную жесткость.
Изобретение поясняется чертежами:
фиг.1 - демпфер вертикального ротора;
фиг.2 - демпфер с основным подвижным элементом, опертым на гибкий диск, где закрепленный по контуру в корпусе демпфера;
фиг.3 - демпфер с дополнительным элементом в виде кольца;
фиг.4 - демпфер с дополнительным элементом в виде диска;
фиг.5 - демпфер с двумя дополнительными элементами.
Демпфер содержит корпус 1, установленный в его полости 2, заполненной демпфирующей жидкостью 3, основной подвижный элемент 4 в виде тела вращения с, по крайней мере, одной кольцевой проточкой 5, подшипник 6 для опирания ротора 7, центрирующие пружины 8, закрепленные в верхней части основного подвижного элемента 4, который шарнирно оперт своей нижней частью через опорную иглу 9 и подпятник 10 на упругий элемент 11, допускающий перемещение в осевом направлении и обеспечивающий жесткую центровку в радиальном направлении. В корпусе 1 выполнена, по крайней мере, одна кольцевая проточка 12, в которую с демпфирующими зазорами 13 помещен один дополнительный демпфирующий элемент 14, присоединенный к основному подвижному элементу 4 в кольцевой проточке 5.
Дополнительный демпфирующий элемент может быть выполнен в виде кольца 15, присоединенного к основному подвижному элементу 4 в кольцевой проточке 5 через упругий элемент подвески 16.
Дополнительный демпфирующий элемент может быть выполнен в виде диска 17, перпендикулярного к оси основного подвижного элемента 4 и жестко связанного с ним в кольцевой проточке 5.
Дополнительные демпфирующие элементы 14, присоединенные в разных кольцевых проточках 5 основного подвижного элемента 4, могут находиться как в его средней части, так и вблизи его торцев, и могут быть помещены, соответственно, в разных кольцевых проточках 12 корпуса.
Присоединение дополнительных демпфирующих элементов 14 к основному подвижному элементу 4 в кольцевых проточках 5, позволяет значительно увеличить демпфирующую поверхность демпфера при практически неизменных массе и моментах инерции его подвижных элементов.
Причем в случае, если дополнительные демпфирующие элементы выполнены в виде колец 15, то упругие элементы их подвески 16 могут иметь либо одинаковую жесткость, либо различную.
Если дополнительные демпфирующие элементы выполнены в виде дисков 17, то диски 17 могут обладать либо одинаковой изгибной жесткостью, либо различной.
Основной подвижный элемент 4 может быть оперт своей нижней частью через опорную иглу 9 и подпятник 10 на упругий элемент 18, выполненный в виде одного или нескольких гибких дисков, закрепленных по контуру в корпусе 1 демпфера.
Работа демпфера происходит следующим образом.
При приведении ротора 7 во вращение, на различных скоростях могут возникать его радиальные и аксиальные колебания. При этом ротор 7 через подшипник 6 приводит в радиальное или аксиальное колебательное движение основной подвижный элемент демпфера 4. Связанный с ним, по крайней мере, один дополнительный демпфирующий элемент 14 демпфера, также приходит в радиальное или аксиальное колебательное движение. Таким образом, перемещаясь совместно в полости 2, заполненной демпфирующей жидкостью 3, оба подвижных элемента осуществляют работу демпфирования как в радиальном, так и в аксиальном направлении.
При низкочастотных радиальных колебаниях ротор 7 через подшипник 6 раскачивает основной подвижный элемент 4 без изгиба опорной иглы 9 на подпятнике 10 в полости 2 с демпфирующей жидкостью 3.
Перемещение основного подвижного элемента 4 и дополнительного демпфирующего элемента 14 в демпфирующей жидкости 3 вызывает частичное поглощение энергии колебаний ротора 7, эффективность которого зависит от суммарной площади демпфирующих поверхностей подвижных элементов. В результате, амплитуда радиальных колебаний ротора уменьшается.
На этой форме колебаний основного подвижного элемента 4, повышение эффективности демпфирования за счет добавления демпфирующей поверхности дополнительного демпфирующего элемента 14 к демпфирующей поверхности основного подвижного элемента 4 не столь значительно.
Однако при высокочастотных радиальных колебаниях ротор 7 через подшипник 6 раскачивает основной подвижный элемент 4 вокруг его центра давления, расположенного примерно в его средней части, уже с изгибом опорной иглы 9.
На этой форме колебаний основного подвижного элемента 4 происходит существенная добавка демпфирующей поверхности к поверхности основного подвижного элемента 4, за счет поверхности дополнительного подвижного элемента 14, что выражается в виде общего подъема эффективности радиального демпфирования, особенно в области собственной частоты колебаний основного подвижного элемента 4, и расширении за счет этого эффективного частотного диапазона демпфера.
При аксиальных колебаниях ротор 7 через подшипник 6 раскачивает основной подвижный элемент 4 в демпфирующей жидкости 3 на упругом элементе 11. Вместе с основным подвижным элементом 4 в кольцевой проточке 12 корпуса синхронно перемещается дополнительный демпфирующий элемент 14, имеющий значительную демпфирующую поверхность.
Перемещение дополнительного демпфирующего элемента 14 вызывает перетекание демпфирующей жидкости 3 в демпфирующих зазорах 13 кольцевой проточки 12 корпуса 1, что приводит к поглощению энергии колебаний ротора 7 и уменьшению амплитуды его аксиальных колебаний.
Таким образом, введение в конструкцию демпфера дополнительных демпфирующих элементов описанной конструкции позволило при практически неизменных массе и моментах инерции подвижных элементов демпфера значительно увеличить его рабочие поверхности. В результате, суммарная угловая жесткость на основном элементе демпфера увеличилась, обеспечив общий подъем эффективности, особенно в области частотных настроек основного элемента, и существенное расширение частотного диапазона при меньших рабочих перемещениях основного подвижного элемента.
Кроме того, демпфер приобрел дополнительную эффективность в аксиальном направлении.
название | год | авторы | номер документа |
---|---|---|---|
ДЕМПФЕР | 2006 |
|
RU2313012C1 |
ДЕМПФЕР | 2013 |
|
RU2564485C2 |
ДЕМПФИРУЮЩИЙ УЗЕЛ | 2005 |
|
RU2292500C1 |
ДЕМПФЕР ДЛЯ ВЫСОКОСКОРОСТНОГО ВЕРТИКАЛЬНОГО РОТОРА | 2009 |
|
RU2405988C1 |
ДЕМПФИРУЮЩИЙ УЗЕЛ | 2005 |
|
RU2292499C1 |
ДЕМПФЕР | 1996 |
|
RU2121089C1 |
ДЕМПФИРУЮЩИЙ УЗЕЛ | 2013 |
|
RU2538838C2 |
ДЕМПФИРУЮЩИЙ УЗЕЛ | 1992 |
|
RU2044937C1 |
Демпфер вертикального ротора | 2020 |
|
RU2767396C1 |
ДЕМПФЕР | 1992 |
|
RU2050485C1 |
Изобретение относится к машиностроению, в частности к устройствам подавления механических колебаний роторных систем. Демпфер вертикального ротора содержит корпус, установленный в его полости, заполненной демпфирующей жидкостью, основной подвижный элемент в виде тела вращения, снабженный дополнительным демпфирующим элементом, подшипник для опирания ротора и центрирующие пружины, закрепленные в верхней части основного подвижного элемента, который шарнирно оперт своей нижней частью через опорную иглу и подпятник на упругий элемент. Дополнительный демпфирующий элемент присоединен к основному подвижному элементу в его кольцевой проточке и расположен в проточке корпуса, которая образует демпфирующие зазоры вокруг дополнительного демпфирующего элемента. Достигается увеличение общей эффективности демпфирования, расширение частотного диапазона эффективного демпфирования в радиальном направлении и дополнительного демпфирования в аксиальном направлении. 6 з.п. ф-лы, 5 ил.
GB 1570358 А, 02.07.1980 | |||
ДЕМПФИРУЮЩИЙ УЗЕЛ | 1992 |
|
RU2044937C1 |
ДЕМПФЕР | 1992 |
|
RU2050485C1 |
ДЕМПФИРУЮЩИЙ УЗЕЛ | 2001 |
|
RU2223428C2 |
Способ получения адсорбента для поглощения сероводорода из водных растворов | 1989 |
|
SU1775168A1 |
Авторы
Даты
2007-04-27—Публикация
2005-07-22—Подача