КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО, ОГНЕСТОЙКОГО И ТЕПЛОИЗОЛЯЦИОННОГО ПОКРЫТИЯ, ПРИМЕНЕНИЕ ЕЕ Российский патент 2007 года по МПК C09D163/00 C09D5/08 C09D5/18 C08K7/22 

Описание патента на изобретение RU2301241C2

Изобретение относится к области получения защитных покрытий, в частности к получению антикоррозионных покрытий с повышенной огнестойкостью и теплоизоляционными свойствами на таких поверхностях как металл, бетон и, в частности, для защиты трубопроводов, эксплуатирующихся в районах вечной мерзлоты, под водой и при больших перепадах температур и давлений внутри и вне трубопроводов, и может быть также использовано в нефте-, газодобывающей, нефтехимической промышленности, а также в коммунальном хозяйстве и в других областях, где требуется защита поверхностей от коррозии, теплозащита и защита от воспламенения.

Известно антикоррозионное покрытие трубопровода, содержащее эпоксидное покрытие, связанное с трубой, и выставленную термопластичную ленту, порывающую эпоксидное покрытие и закрепленную на нем при помощи клея; эпоксидное покрытие имеет толщину 0,05-0,25 мм, а само антикоррозионное покрытие имеет толщину 0,15-1-27 мм (SU 1165242, 30.06.1985). Однако покрытие получают по достаточно сложной технологии, и оно не обеспечивает необходимые теплозащиту и огнезащиту поверхностям.

Известна теплоизоляционная смесь, используемая для изготовления теплоизоляционных плит, включающая органическое связующее (фенолформальдегидная смола, меламиноформальдегидная смола, мочевиноформальдегидная смола) и полые микросферы - продукт гравитационной сепарации летучих зол ТЭЦ с содержанием 40-60 вес.% двуокиси кремния (SU 865119, 15.09.1981). Получаемый материал имеет хорошие теплоизоляционные свойства, но не предназначен для получения покрытий как таковых с необходимой огнестойкостью и коррозионностойкостью.

Известна самозатухающая полимерная композиция, включающая эпоксидную смолу, отвердитель олигоамидоамин, аммоний фосфорнокислый, порошок отвержденной фенолформальдегидной смолы и полые стеклянные микросферы (RU 2220990, 10.01.2004). Однако данная композиция не обеспечивает необходимых теплоизоляционных свойств и не предназначена для получения покрытия, а используется для заполнения участков сотовых конструкций в авиационной технике.

Известна композиция для получения теплогидроизоляционных покрытий трубопроводов, включающая эпоксидное связующее, отвердитель - полиэтиленполиамин, пластификатор стеклянные микросферы диаметром 200-300 микрон и полиизобутилен (RU 93052300, заявка 20.07.1996).

Известная композиция имеет повышенные теплоизоляционные свойства, высокую механическую прочность и водонепроницаемость, однако имеющиеся ее свойства на сегодняшний день не полностью удовлетворяют повышенные требования к таким покрытиям.

Известна полимерная композиция, используемая в качестве шпаклевки, клеев, уплотнений и покрытий, включающая полимер (полиэфирные смолы, ПВА, акрилаты, эпоксидные смолы, виниловые, каучук, полиуретан, кремнийорганические смолы), отвердитель и полые микросферы из силиката или органического полимера с диаметром 20-500 мк, а также различные вспомогательные добавка (целевые) (SU 869561, 30.09.1981). При этом один из компонентов - полимер или отвердитель - инкапсулирован. Известная композиция является тиксотропной, обладает повышенной жизнеспособностью, но не предназначена для использования ее для получения покрытия с высокими огнестойкостью, теплоизоляционными свойствами и антикоррозионными свойствами. Данная композиция по технической сущности является наиболее близкой к заявленной группе изобретения.

Технической задачей заявленной группы изобретения является получение многофункционального покрытия, выполняющего одновременно функции теплоизоляционного, огнестойкого покрытия с повышенной коррозионной стойкостью в различных агрессивных средах.

Поставленная техническая задача достигается тем, что композиция для покрытия, включающая в качестве связующего эпоксидную смолу, отвердитель, полые микросферы и при необходимости вспомогательные целевые добавки, содержит в качестве полых микросфер смесь полых микросфер, различающихся между собой размерами в пределах от 10 до 500 мкм и насыпной плотностью в пределах от 650 до 50 кг/м3, выбранных из группы, включающей полые стеклянные микросферы, полые керамические микросферы, полые полимерные микросферы, полые техногенные (зольные) микросферы или их смеси при следующем соотношении компонентов, мас.ч.:

Эпоксидная смола5-95Отвердитель3-65Вышеуказанная смесь полых микросфер5-95Вспомогательные целевые добавки0-20

Поставленная техническая задача достигается также и применением данной заявленной композиции в качестве покрытия многофункционального (огнезащитного, теплоизоляционного и антикоррозионного) для защиты трубопроводов.

В заявленной композиции возможно использование различных эпоксидных смол, а именно эпоксидно-диановых смол марок ЭД-20, ЭД-6 и др, эпоксиноволачных смол, эпоксирезольных смол, эпоксиэфирных смол (модифицированных растительными маслами), циклоалифатических эпоксидных смол, например УП-632 и др.

В качестве отвердителя используют различные отвердители, традиционно используемые для эпоксидных смол (отвердители холодного и горячего отверждения), в частности отвердители аминного типа (полиэтиленполиамин, гексаметилендиамин и др.), полиамидные отвердители (низкомолекулярные полиамины марок ПО-200, ПО-300 и др.), олигоамидоамины, имидазольные отвердители, аминофенольные отвердители и др. Выбор отвердителя зависит от типа используемой эпоксидной смолы. Композиция дополнительно при необходимости может содержать различные катализаторы отверждения для эпоксидных смол как целевые добавки; в качестве других целевых добавок композиция может содержать пластификаторы, пигменты, наполнители и прочие целевые добавки для усиления тех или иных свойств покрытия.

Для получения покрытия с наименьшим объемом свободного пространства между микросферами и, как следствие этого, с высокими теплозащитными и огнезащитными свойствами, а также коррозионной стойкостью (водонепроницаемость) необходимо использовать смеси полых микросфер (стеклянные, керамические, полимерные, зольные /техногенные/) с разными размерами (радиусами) в пределах от 10 до 500 микрометров и различающиеся по плотности в пределах от 650 до 50 кг/м3. При использовании микросфер с близкими, но не такими размерами и др. характеристиками степень заполнения пространств будет ниже, а следовательно, и свойства хуже.

Полые микросферы из стекла, керамики, полимеров главным образом получают путем введения порообразователей в основной материал, последующего их измельчения и нагревания для вспенивания порообразователя. Например, полые микросферы получают путем пропускания мелких частиц, содержащих порофор, через высокотемпературную зону; частицы плавятся или размягчаются в горячей зоне. А газообразователь формирует полость внутри частиц, расширяя их. При охлаждении сферы на воздухе ее стенки затвердевают. Либо их получают методом вспенивания стеклянных (или керамических) частиц в пламени горелки и т.д. В качестве полых микросфер взаявленной композиции используют, например, микросферы типа Глас бабез, типа Микробаллон, глобумит, сферолит. Керамические микросферы тоже получают путем сжигания природных материалов и вспенивания.

Полимерные микросферы полые получают, как правило, либо суспензионной полимеризацией мономеров с добавлением порообразователей (порофор, инертные газы, низкокипящие углеводороды), либо путем физического или химического вспенивания уже готовых полимеров в виде измельченных частиц. В качестве полых полимерных микросфер композиция по изобретению содержит, например, полистирольные микросферы полые на основе фенолоформальдегидных смл, силиконовые и др.

Композицию по изобретению получают тщательным перемешиванием связующего (эпоксидной смолы) с микросферами (смесью их) и последующего введения отвердителя соответствующего (перед использованием ее). Если композиция содержит какие-либо другие вспомогательные добавки, то их вводят или совместно с микросферами или после, но до введения отверждающих добавок.

В нижеследующей таблице представлены примеры композиции по изобретению и основные свойства покрытий.

ТаблицаНаименование компонентовСоотношения компонентов в мас.ч. по примерам1234561. Эпоксидная смола диановая ЭД-205,095,050,095,010,020,02. Отвердитель - полиэтиленполиамин3,065,030,050,06,010,03. Полые микросферы (смесь)- смесь стеклянных микросфер95,0-50,0--30,0- с размером 35 мкм и плотностью 650 кг/м340,0-20,0--10,0- с размером 100 мкм и плотностью 150 кг/м348,0-10,0--10,0- с размером 200 мкм и плотностью 70 кг/м37,0-20,0--10,0- смесь полимерных микросфер: (полистирольные)-5,0-30,020,0-- с размером 10 мкм и плотность 650 кг/м3-1,0-10,02,5-- с размером 500 мкм и плотность 50 кг/м3-0,5-10,015,0-- с размером 50 мкм и плотность 400 кг/м3-3,5-10,02,5-Свойства:Механическая прочность: Разрушающее напряжение при сжатии При 20°С, МПаВодопроницаемость,непроницаемо для водыТеплозащитные свойстване разрушается при воздействии температур порядка 500-1000 С в течении длительного воздействияГруппа горючестине горючееАдгезия к подложке, балл11111Коррозийная стойкость:- в солевых растворахне разрушается при длительном воздействии- стойкость к воздействиюнефтепродуктовне разрушается в течение длительного времени

Таким образом покрытия получаемые из композиции по изобретению обладают достаточно высокими свойствами, совмещая одновременно хорошие теплоизоляционные свойства, огнезащитные свойства и антикоррозионные свойства, что позволяет с успехом применять ее для защиты трубопроводов.

Похожие патенты RU2301241C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО И ОГНЕСТОЙКОГО МНОГОСЛОЙНОГО КОМБИНИРОВАННОГО ПОЛИМЕРНОГО ПОКРЫТИЯ 2007
  • Беляев Виталий Степанович
  • Федотов Игорь Михайлович
RU2352601C2
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО, ОГНЕСТОЙКОГО И ТЕПЛОИЗОЛЯЦИОННОГО ПОКРЫТИЯ И ЕЕ ПРИМЕНЕНИЕ 2005
  • Беляев Виталий Степанович
RU2288927C1
ТЕПЛОИЗОЛЯЦИОННОЕ, АНТИКОРРОЗИОННОЕ И ЗВУКОПОГЛОЩАЮЩЕЕ ПОКРЫТИЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Беляев Виталий Степанович
RU2533493C2
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МНОГОСЛОЙНОГО КОМБИНИРОВАННОГО ПОЛИМЕРНОГО ПОКРЫТИЯ (ВАРИАНТЫ) 2007
  • Беляев Виталий Степанович
RU2352467C2
ПРИМЕНЕНИЕ КОМПОЗИЦИИ, НАПОЛНЕННОЙ ПОЛЫМИ МИКРОСФЕРАМИ, В КАЧЕСТВЕ АНТИКОРРОЗИОННОГО И ТЕПЛОИЗОЛЯЦИОННОГО ПОКРЫТИЯ ТРУБОПРОВОДОВ 2005
  • Беляев Виталий Степанович
RU2304600C2
АНТИКОРРОЗИОННОЕ И ТЕПЛОИЗОЛЯЦИОННОЕ ПОКРЫТИЕ НА ОСНОВЕ ПОЛЫХ МИКРОСФЕР 2003
  • Беляев В.С.
RU2251563C2
ВОДНАЯ КОМПОЗИЦИЯ, НАПОЛНЕННАЯ ПОЛЫМИ МИКРОСФЕРАМИ, ДЛЯ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО И ТЕПЛОИЗОЛЯЦИОННОГО ПОКРЫТИЯ И СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ НА ЕЕ ОСНОВЕ 2005
  • Беляев Виталий Степанович
RU2304156C1
ПОКРЫТИЕ, НАПОЛНЕННОЕ ПОЛЫМИ МИКРОСФЕРАМИ, ПРЕДОТВРАЩАЮЩЕЕ ОБЛЕДЕНЕНИЕ ПОВЕРХНОСТЕЙ РАЗЛИЧНЫХ ИЗДЕЛИЙ 2006
  • Беляев Виталий Степанович
RU2349618C2
Композиция для получения огнестойкого антикоррозионного теплоизоляционного покрытия и способ ее приготовления (варианты) 2021
  • Макарова Екатерина Сергеевна
  • Черезова Елена Николаевна
  • Войлошников Владимир Михайлович
  • Тарамасова Диляра Рафаилевна
  • Нефёдов Андрей Вячеславович
RU2779120C1
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО ГРАДИЕНТНОГО ПОКРЫТИЯ 2009
  • Амирова Лилия Миниахмедовна
  • Андрианова Кристина Александровна
  • Рыбаков Виталий Владимирович
  • Овчинников Евгений Вячеславович
  • Амирова Ляйсан Рустэмовна
RU2424905C1

Реферат патента 2007 года КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО, ОГНЕСТОЙКОГО И ТЕПЛОИЗОЛЯЦИОННОГО ПОКРЫТИЯ, ПРИМЕНЕНИЕ ЕЕ

Изобретение относится к получению антикоррозионной, огнестойкой и теплоизоляционной композиции, используемой в нефте-, газодобывающей, нефтехимической промышленности, в коммунальном хозяйстве и в других областях, где требуется защита поверхностей от коррозии, теплозащита и защита от воспламенения, а также к применению композиции в качестве защитного покрытия для металла, бетона и, в частности, для защиты трубопроводов, эксплуатирующихся в районах вечной мерзлоты, под водой и при больших перепадах температур и давлений внутри и вне трубопроводов. Композиция включает следующее соотношение компонентов, мас.ч: 5-95 эпоксидной смолы, 3-65 отвердителя, 5-95 смеси полых микросфер, 0-20 целевых вспомогательных добавок. Полые микросферы выбирают из группы, включающей полые стеклянные микросферы, полые керамические микросферы, полые полимерные микросферы, полые техногенные микросферы или используют их смеси. Микросферы берут в пределах от 10 до 500 мкм с насыпной плотностью в пределах от 650 до 50 кг/м3. Изобретение позволяет повысить коррозионную стойкость, огнестойкость и теплоизоляционную стойкость. 2 н.п. ф-лы, 1 табл.

Формула изобретения RU 2 301 241 C2

1. Композиция для получения антикоррозионного, огнестойкого и теплоизоляционного покрытия, включающая эпоксидную смолу, отвердитель и полые микросферы, а также при необходимости вспомогательные целевые добавки, отличающаяся тем, что она содержит смесь полых микросфер, различающихся друг от друга размерами в пределах от 10 до 500 мкм и насыпной плотностью в пределах от 650 до 50 кг/м, выбранные из группы, включающей стеклянные полые микросферы, керамические полые микросферы, полимерные полые микросферы, техногенные полые микросферы или их смеси при следующем соотношении компонентов, мас.ч:

Эпоксидная смола5-95Отвердитель3-65Вышеуказанная смесь полых микросфер5-95Целевые вспомогательные добавки0-20

2. Применение композиции по п.1 в качестве антикоррозионного, огнезащитного и теплоизоляционного покрытия для трубопроводов.

Документы, цитированные в отчете о поиске Патент 2007 года RU2301241C2

Полимерная композиция 1976
  • Рудольф Хинтервальднер
SU869561A3
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ СИНТАКТНОЙ ПЕНЫ, ТЕПЛОИЗОЛИРОВАННАЯ ТРУБА И СПОСОБ НАНЕСЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО ПОКРЫТИЯ НА ВНЕШНЮЮ ПОВЕРХНОСТЬ ТРУБЫ 1999
  • Телегин В.А.
  • Телегина Е.Б.
  • Горев В.А.
  • Шестаков С.П.
  • Ремизов В.В.
  • Михайлов Н.В.
  • Тимонин В.И.
  • Газиянц А.П.
RU2187433C2
RU 93052300 А, 20.07.1996
JP 61016971 А, 24.01.1986
US 2001031359 А, 18.10.2001.

RU 2 301 241 C2

Авторы

Беляев Виталий Степанович

Даты

2007-06-20Публикация

2005-07-13Подача