FIELD: fluidics; methods of cleaning vapor-and-gas mixtures from hydrocarbons.
SUBSTANCE: proposed method includes delivery of liquid medium to liquid-and-gas jet apparatus by means of pump, scavenging of vapor-and-gas mixture from reservoir being filled with oil or gasoline and compression of this medium in liquid-and-gas jet apparatus. Mixture of vapor-and-gas and liquid media formed in liquid-and-gas jet apparatus is fed to separator. Liquid medium is removed from separator to reservoir being filled with oil or gasoline. Oil or gasoline is fed to pump inlet or to separator. Gaseous phase from separator is fed to the second liquid-and-gas jet apparatus; liquid phase fed to this apparatus by means of pump compresses gaseous phase. Mixture of gaseous phase and liquid medium formed in the second vapor-and-gas jet apparatus is fed to the second separator. Liquid medium from the second separator is discharged to reservoir being filled with oil or gasoline and simultaneously oil or gasoline is fed to the inlet of the second pump or to the second separator. Gas mixture from the second separator is fed to the third liquid-and-gas jet apparatus to which adsorbent is fed by means of the third pump and hydrocarbons are absorbed by this absorbent from gas medium. Mixture of gas medium and absorbent formed in the third liquid-and-gas jet apparatus is fed to the third separator where pressure is maintained within 0.7-2.5 Mpa and mixture is divided into gas medium cleaned from hydrocarbons and absorbent saturated with hydrocarbons of gas medium; this absorbent is directed to the desorber where pressure is maintained below pressure in the third separator; hydrocarbons of gas medium contained in saturated absorbent are separated from it and absorbent from desorber is directed to the third pump inlet. Plant may be provided with additional liquid-and-gas jet apparatus and preliminary desorber.
EFFECT: reduced losses of oil or gasoline; reduced power expenses; high degree of cleaning vapor-and-gas mixture discharged into atmosphere from hydrocarbons.
21 cl, 2 dwg
Authors
Dates
2007-08-10—Published
2005-12-29—Filed