Предложенное изобретение относится к области приборостроения и предназначено для защиты от воздействия радиации различных видов радиотехнического оборудования, преимущественно для защиты элементной базы радиоэлектронной аппаратуры космических аппаратов и/или изделий квантовой электроники и т.п.
При отсутствии защиты земной атмосферы и специальных радиационных экранов электронные компоненты космических аппаратов подвергаются воздействию неблагоприятных условий окружающей среды космоса (электронное излучение, протонное излучение, электромагнитное излучение низкой интенсивности). Для исключения отказов радиоэлектронного оборудования на космических аппаратах используют стойкие к воздействию радиации компоненты или экранирование, обеспечивающие при минимальных габаритно-массовых характеристиках максимальный срок активного существования и надежность.
Наиболее эффективные способы снижения воздействия радиации заключаются в поглощении энергии излучения при прохождении через толщу какого-либо вещества. Для обеспечения защиты от ионизирующих излучений в настоящее время наиболее широко используются алюминиевые сплавы, легированные элементами с высоким атомным номером (лантаноидами и редкоземельными элементами), сплавы на основе тугоплавких и редкоземельных металлов и многослойные материалы.
В качестве аналога изобретения выбрано радиационно-защитное покрытие трехмерных многокристальных модулей, известное из патента США US 6858795, размещаемое на подвергающихся воздействию ионизирующего излучения поверхностях. Защита от радиационного воздействия обеспечивается герметично соединенными подложкой, на которой расположены интегральные схемы, крышкой и комбинацией боковых стенок, представляющих собой ограждающий короб в виде кольца и изготовленных из материала, стойкого к воздействию радиации. В качестве материалов, стойких к воздействию радиации, используются сплавы вольфрама или металлы с атомным весом более 40.
Известное из US 6858795 покрытие не обеспечит эффективную защиту от различных видов излучений и не позволит снизить в необходимой мере габаритно-массовые показатели радиоэлектронной аппаратуры.
Целью настоящего изобретения является создание защитного покрытия элементов радиоэлектронного оборудования, обеспечивающего при минимальных габаритно-массовых характеристиках максимальную защиту элементной базы от радиационного воздействия.
Техническим результатом, ожидаемым от использования предложенного технического решения, является создание защитного покрытия элементов радиоэлектронного оборудования, обладающего высокой стойкостью к воздействию ионизирующих излучений при небольшом удельном весе.
Дополнительно предложенное техническое решение позволит снизить интенсивность случайных сбоев радиоэлектронной аппаратуры при воздействии тяжелых заряженных частиц солнечных космических лучей и галактического космического излучения, представляющих существенную опасность для элементов динамической и статической памяти в периоды повышенной солнечной активности.
Технический результат достигается тем, что предложено защитное покрытие элементов радиоэлектронной аппаратуры, размещенное на поверхностях, подвергающихся воздействию ионизирующего излучения. Защитное покрытие выполнено в виде наноструктуры. Наноструктура включает совокупность атомов редкоземельных элементов, введенных в структуру армирующей атомно-молекулярной матрицы. Наноструктура может быть составной частью защищаемой конструкции либо защитным слоем конструкции.
Для изготовления армирующей металлической матрицы наиболее предпочтительно использовать металлы с атомным номером больше 50, такие как церий, гафний, тантал, вольфрам, либо сплавы этих металлов. Также для изготовления армирующей матрицы могут быть использованы другие тугоплавкие высокопрочные металлы, такие как алюминий, титан, ванадий, хром, ниобий, молибден, цирконий, никель, кобальт, либо сплавы этих металлов.
На армирующую металлическую матрицу нанотехнологически наносятся атомы редкоземельных элементов, наиболее выгодно для таких целей могут быть использованы атомы, валентно-связанные с материалом матрицы. Предпочтительным вариантом исполнения является выполнение наноструктуры в виде пространственной амплитудной дифракционной решетки или седиментированного (осажденного) слоя редкоземельных элементов в расплаве, обеспечивающей минимальные затраты материала.
Готовое покрытие закрепляется на поверхностях элемента, подвергающихся воздействию радиации, и заливается металлическим или полимерным материалом. Для подвергающейся воздействию радиации микросхемы или микросборки полученное покрытие может являться частью: конструкции непосредственно, корпуса, подложки кристалла, эвтектического слоя, с помощью которого кристалл микросхемы или микросборки соединен с корпусом, а также может являться частью зеркал резонатора лазера.
Например, для сложной микросхемы защитное покрытие может быть нанесено на радиатор микросхемы с направления верхней полусферы. С направления нижней полусферы кристалл микросхемы может быть защищен покрытием, приклеенным на противоположную от микросхемы сторону несущей печатной платы. Таким образом, кристалл микросхемы оказывается экранированным практически в полном телесном угле (4π стерадиан). Для меньших телесных углов могут быть выполнены локальные защитные экраны, являющиеся отъемлемой частью конструкции микросхемы. Для лазерного зеркала - это тыльная часть зеркала (2π стерадиан).
Таким образом, предложенное изобретение позволит создать защитное покрытие, обеспечивающее при минимальных габаритно-массовых характеристиках максимальную защиту элементной базы от радиационного воздействия в заданном телесном угле или с нужного направления.
название | год | авторы | номер документа |
---|---|---|---|
Защитный экран от ионизирующего излучения для бортового комплекса оборудования | 2017 |
|
RU2664715C2 |
РАДИАЦИОННО-ЗАЩИТНОЕ ПОКРЫТИЕ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ | 2016 |
|
RU2605608C1 |
РАДИАЦИОННО-ЗАЩИТНОЕ ТЕРМОРЕГУЛИРУЮЩЕЕ ПОКРЫТИЕ ДЛЯ КОСМИЧЕСКИХ АППАРАТОВ | 2014 |
|
RU2554183C1 |
Защитная метка и рентгеновское устройство для ее чтения | 2018 |
|
RU2688240C1 |
Композиция для защиты электронных приборов от воздействия излучений космической среды | 2015 |
|
RU2619455C1 |
СПОСОБ ЗАЩИТЫ ОТ РАДИАЦИИ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ | 2017 |
|
RU2643353C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДОЗЫ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ | 2011 |
|
RU2451604C1 |
ПОКРЫТИЕ ДЛЯ ЗАГОТОВКИ КОСМИЧЕСКОГО ЗЕРКАЛА | 2013 |
|
RU2522448C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2022 |
|
RU2799773C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ НА ИСТОЧНИК ГАММА-ИЗЛУЧЕНИЯ ПО ДВУМ КООРДИНАТАМ В ТЕЛЕСНОМ УГЛЕ 2π СТЕРАДИАН | 2014 |
|
RU2579799C1 |
Изобретение относится к области приборостроения. Технический результат заключается в создании защитного покрытия, обладающего высокой стойкостью к воздействию ионизирующих излучений при небольшом удельном весе конструкции. Сущность изобретения заключается в том, что защитное покрытие выполнено в виде наноструктуры. Наноструктура включает совокупность атомов редкоземельных элементов, введенных в структуру армирующей атомно-молекулярной металлической матрицы. Наноструктура может быть составной частью защищаемой конструкции либо защитным слоем конструкции.
Защитное покрытие элементов радиоэлектронной аппаратуры, размещаемое на подвергающихся воздействию ионизирующего излучения поверхностях данных элементов, отличающееся тем, что защитное покрытие выполнено в виде наноструктуры, которая включает совокупность атомов редкоземельных элементов, введенных в структуру армирующей атомно-молекулярной металлической матрицы, при этом наноструктура является либо составной частью защищаемой конструкции, либо образует ее защитный слой.
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ И ИЗГОТОВЛЕНИЯ МАТЕРИАЛОВ И УСТРОЙСТВ, СОДЕРЖАЩИХ НАНОЧАСТИЦЫ | 2002 |
|
RU2233791C2 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ РАДИАЦИОННО-ЗАЩИТНЫХ МАТЕРИАЛОВ | 2000 |
|
RU2208851C2 |
US 4306921 A, 22.12.1981 | |||
WO 9810442, 12.03.1998 | |||
УНИВЕРСАЛЬНАЯ КАССЕТА ПРЕИМУЩЕСТВЕННО ДЛЯ ТРАНСПОРТНО-ПУСКОВЫХ КОНТЕЙНЕРОВ | 2014 |
|
RU2567677C2 |
Авторы
Даты
2007-08-20—Публикация
2006-03-20—Подача