Перекрестная ссылка на родственные заявки
Данный документ испрашивает приоритет по предварительной заявке США №60/521923, поданной 21 июля 2004 г.
Область техники
Настоящее изобретение относится к выполнению перфорации. В частности, настоящее изобретение относится к устройствам и способам для измерения глубины проникновения перфорационного канала.
Уровень техники
После осуществления бурения скважины и цементирования обсадной колонны в ней одну или несколько секций обсадной колонны, примыкающих к зонам пласта, можно перфорировать, чтобы впустить флюид из зон пласта в скважину для его добычи на поверхность, или для впуска закачиваемых флюидов в зоны пласта. Связку стреляющих перфораторов (состоящую из одного или несколько стреляющих перфораторов) можно опустить в скважину на глубину допуска и осуществить выстрелы из них для формирования отверстия в обсадной колонне и расширять перфорации в окружающий пласт. Добываемые флюиды в перфорированном пласте затем могут проходить через перфорации и отверстия в обсадной колонне в ствол скважины.
Стреляющие перфораторы (которые могут состоять из корпусов перфораторов и кумулятивных зарядов на или в корпусах перфоратора, либо состоять из связки зарядов взрывчатого вещества) обычно опускают через насосно-компрессорную колонну или другие трубы в требуемый интервал скважины. Кумулятивные заряды в стреляющем перфораторе нередко фазируют для выстреливания в нескольких направлениях по окружности ствола скважины. При выстреливании кумулятивные заряды создают перфорирующие струи, которые формируют отверстия в окружающей обсадной колонне и также продлевают перфорации в окружающем пласте.
Но считается, что не существует традиционного устройства или способа для измерения глубины проникновения, создаваемого стреляющим перфоратором в скважине. Как правило, перфорации слишком удалены, чтобы их можно было измерить непосредственно, и поэтому считается, что в настоящее время можно делать только оценочные измерения с помощью эмпирически выработанных моделей, либо можно выполнять экспериментальное моделирование с помощью лабораторной модели, воспроизводящей скважинные условия. Но эмпирические модели довольно ограниченные в отношении прогнозируемого ими значения, а лабораторное моделирование является дорогостоящим, имеет ограниченный масштаб, ограниченную выборку данных, и на нем могут отрицательно сказываться искусственные факторы, наличие которых обусловлено лабораторными условиями.
Поэтому считается, что для нефте- и газодобывающей промышленности необходимы устройства и способы, обеспечивающие возможность выполняемого на месте измерения проникновения скважинной перфорации. Настоящее изобретение направлено на обеспечение указанных устройств и способов.
Сущность изобретения
Согласно варианту осуществления настоящего изобретения предусмотрено устройство для измерения проникновений в скважине.
Например, один из вариантов осуществления скважинного устройства для измерения проникновений перфорации может включать в себя следующие компоненты: источник акустических волн и приемник. Эти компоненты можно расположить по перфорации, и создавать с их помощью колебания определенной частоты в стволе скважины. Эти колебания можно изменять в пределах диапазона частот, пока не обнаружится «характеристическая частота», путем сравнения выходного сигнала источника со входным сигналом приемника. Определяемая таким образом частота характеризует длину перфорации.
Признаки и объекты некоторых вариантов осуществления настоящего изобретения следующие.
(1) Устройство акустического каротажа для создания асимметричных колебаний в некотором диапазоне частот. Источник находится над (либо под) перфорациями. Устройство детектирует передаваемую акустическую энергию под (либо над) перфорациями.
(2) Перфорации образуют полости в стенке обсадной колонны. Эти полости, возбуждаемые источником акустической волны в обсадной колонне ствола скважины, имеют характеристические резонансы, которые создают имеющее широкую амплитуду движение в полости. Эти резонансы можно обнаруживать устройством акустического каротажа при детектировании снижения уровня сигнала возбуждения в передаваемом давлении в стволе скважины на характеристических частотах.
(3) Обнаруживаемую характеристическую частоту соотносят с глубиной перфорации.
Варианты осуществления устройства и способа в соответствии с настоящим изобретением описываются для измерения глубины проникновения перфорации, но предполагается, что изобретение не ограничивается этим скважинным использованием. Другие варианты осуществления предусматривают измерения глубины любых проникновений или любой группы отверстий в боковой стенке ствола скважины.
Краткое описание чертежей
Реализация упоминаемых выше объектов и прочих требуемых характеристик поясняется в приводимом ниже описании и прилагаемыми чертежами, на которых
фиг.1А показывает поперечное сечение варианта осуществления трубопровода с резонатором Гельмгольца;
фиг.1В изображает график, иллюстрирующий увеличение скорости частиц в резонаторе Гельмгольца в зависимости от частоты шума в передающем трубопроводе, показываемом на чертеже фиг.1А;
фиг.1С показывает поперечное сечение варианта осуществления резонатора Гельмгольца;.
фиг.2 показывает профиль варианта осуществления стреляющего перфоратора, используемого для перфорирования планируемого пласта у ствола скважины;
фиг.3 показывает увеличенное поперечное сечение перфорации канала, используемого в качестве резонатора Гельмгольца в соответствии с вариантом осуществления настоящего изобретения;
фиг.4 показывает график кривой затухания в зависимости от частоты в целях определения резонансной частоты резонатора Гельмгольца в соответствии с вариантом осуществления настоящего изобретения;
фиг.5 показывает профиль варианта осуществления системы измерения глубины полости согласно настоящему изобретению;
фиг.6 - схематическое изображение способа измерения глубины полости в соответствии с настоящим изобретением.
Следует отметить, что прилагаемые чертежи показывают только типичные варианты осуществления изобретения, и поэтому они не ограничивают его объем, поскольку в рамках изобретения допустимы и другие эквивалентные варианты осуществления.
Подробное описание изобретения
В приводимом ниже описании его многочисленные подробности указаны для пояснения изобретения. Но специалистам в данной области техники будет ясно, что его можно осуществлять и без этих подробностей и многочисленных вариантов или модификаций, излагаемых в описываемых вариантах осуществления.
В данном описании термины «соединять», «соединение», «соединенный», «в соединении с» и «соединяющий» означают «в прямом соединении с» или «в соединении посредством другого элемента»; и термин «группа» означает «один элемент» или «более одного элемента»; и термины «вверх» и «вниз», «верхний» и «нижний», «сверху» и «снизу», «перед» и «после», «над» и «под» и прочие аналогичные термины, указывающие взаимные положения над или под данной точкой или элементом, в этом описании используются для пояснения некоторых вариантов осуществления изобретения. Но применительно к устройству и способам, используемым в наклонных или горизонтальных скважинах, эти термины могут обозначать «слева направо», «справа налево» или другое соответствующее взаимоотношение. В данном описании термины «вверх» и «вниз», «верхний» и «нижний», «сверху» и «снизу», «над» и «под» и прочие аналогичные термины, указывающие взаимные положения над или под данной точкой или элементом, используются для пояснения некоторых вариантов осуществления настоящего изобретения. Но применительно к устройству и способам, используемым в наклонных или горизонтальных скважинах, или когда это устройство имеет наклонную или горизонтальную ориентацию, эти термины могут обозначать «слева направо», «справа налево» или другое соответствующее взаимоотношение.
Принцип работы устройства измерения проникновения в соответствии с некоторыми вариантами осуществления настоящего изобретения основан на эффекте Гельмгольца, который иногда используется для ослабления звука (например, в трубопроводах кондиционирования воздуха, электродвигателях и пр.) для ослабления шума определенной частоты. Например, обращаясь к фиг.1А, для снижения шума в воздуховоде 10 объемный резонатор 20 или резонатор Гельмгольца можно соединить со стороной воздуховода таким образом, что перемещающийся в резонаторе воздух будет иметь колебания при реагировании на воздух, идущий в воздуховоде. Геометрия резонатора 20 характеризуется эффективной массой и жесткостью, которые соответствуют колебаниям в воздуховоде 10. Если геометрия резонатора подобрана правильно, то воздух в резонаторе 20 будет колебаться на частоте нежелательного шума и, поэтому, рассеивать нежелательный шум из потока, передаваемого по воздуховоду 10. Фиг.1В показывает увеличение скорости частиц внутри резонатора Гельмгольца в зависимости от частоты шума в передающем канале. Скорость частиц имеет заметное увеличение амплитуды по мере приближения к частоте, характеризуемой ее размерами. Точная амплитуда вблизи резонанса зависит от фактического демпфирования, обеспечиваемого системой.
В другом примере традиционный резонатор Гельмгольца 50 содержит камеру 51, ограничивающую замкнутое воздушное пространство 52, которое сообщается с внешним пространством через отверстие 54. Воздушная пробка 56 в отверстии 54 формирует массу, которая резонирует на пружинящем усилии, формируемом посредством воздуха в замкнутом пространстве 52. Резонансная частота этого резонатора 50 Гельмгольца зависит от площади отверстия 54, объема замкнутого воздушного пространства 52 и от длины x воздушной пробки 56, сформированной в отверстии. Частотный диапазон и степень затухания можно регулировать, изменяя габариты камеры 51, ограничивающей воздушное пространство 52, и/или изменяя размер отверстия 54. При увеличении объема воздушного пространства 52 резонансная частота смещается к диапазону более низких частот; и при уменьшении объема воздушного пространства резонансная частота смещается к диапазону более высоких частот. Аналогично, если площадь отверстия 54 уменьшается, то резонансная частота смещается к диапазону более низких частот, и если площадь отверстия 54 увеличивается, то резонансная частота смещается к диапазону более высоких частот.
Согласно одному варианту осуществления настоящего изобретения принцип эффекта Гельмгольца применяется для ствола скважины с перфорациями для определения глубины перфорационных каналов. Согласно фиг.2, ствол скважины 100, заполненный скважинной жидкостью и имеющий обсадную колонну 110 (либо ствол скважины может быть обсаженным или открытым), пересекающую продуктивный пласт 105, может быть перфорированным в целях облегчения эксплуатации скважины. Например, стреляющий перфоратор 120 (например, корпусный перфоратор, бескорпусный перфоратор, ленточный перфоратор и пр.) можно опустить в ствол скважины 100 на несущем тросе 130 (например, вспомогательном тросе, подъемном стропе, кабеле, спиральной трубе и т.д.). Стреляющий перфоратор 120 содержит один или более зарядов 125 взрывчатого вещества (например, кумулятивных зарядов или капсюльных зарядов). Стреляющий перфоратор 120 опускают на планируемую глубину, чтобы заряды 125 взрывчатого вещества находились вблизи обрабатываемого пласта 105. В этом местоположении стреляющий перфоратор 120 детонируют, в результате чего заряды взрывчатого вещества 125 перфорируют окружающую обсадную колонну 110 и проникают в продуктивный пласт 105. Это перфорирование создает одно или более перфорационных каналов 140. Обычно перфорационный канал 140 представляет собой конусообразную полость 142, окруженную слоем раздробленного пласта или «раздробленной зоны» 144, разрушенной детонацией заряда взрывчатого вещества (фиг.3).
Обращаясь к фиг.3: как и в примерах, описываемых выше и показываемых на чертежах фиг.1А, 1В и 1С, полость 142 перфорационного канала 140 имеет способность колебаться при возбуждении ее на определенной частоте движения в стволе скважины 105. Но вместо воздушной среды, согласно приводимым выше примерам, средой в стволе скважины 100 и полости 142 является жидкость. Для пояснения, ствол скважины 100 аналогичен воздуховоду 10 (фиг.1А) и полость 142 перфорации аналогична резонатору Гельмгольца 20 (фиг.1А). Источник акустических волн можно использовать для обеспечения акустического сигнала в стволе скважины 100, для перемещения скважинной жидкости по перфорационному каналу 140 на скорости SV от упомянутого источника. Скважинная жидкость в полости 142 перфорационного канала 140, будучи возбужденной с помощью частоты, близкой к характеристической частоте полости, будет действовать как резонатор Гельмгольца. За счет этого возникнет движение скважинной жидкости в полости 142 на скорости канала TV. Это движение скважинной жидкости в полости 142 можно использовать для ослабления звука во время его распространения в стволе скважины 100. Причем если источник акустической волны излучает сигнал на резонансной частоте полости 142, то принимаемый сигнал будет затухать. Путем контролирования ствола скважины 100 в отношении этого характерного затухания можно будет определить резонансную частоту полости 142 (т.е. резонансной частотой будет частота, формируемая источником акустической волны звука, обусловливающая максимальное затухание в стволе скважины). Максимальное затухание зависит от внутреннего рассеяния движения внутри перфорационного канала, которое, в свою очередь, зависит от устойчивости (крепости) стенки перфорационного канала и вязкости скважинной жидкости. Например, затухание можно выразить отношением давления источника (из источника акустической волны) над перфорацией и принимаемого давления (акустическим приемником) под перфорациями. Это отношение можно также измерить как чувствительность по напряжению соответствующих преобразователей.
Например, согласно фиг.4, резонансная частота перфорационного канала может составлять 1666 Гц, которая указана как значение частоты, при котором затухание имеет характерный минимум. После определения резонансной частоты длину полости 142 можно вычислить математически (например, с помощью модели первого порядка идеальной цилиндрической полости). Для цилиндрической полости длиной (Р) первичная резонансная частота (fp) определяется по следующему выражению:
fp=0,25 с/Р.
где с - скорость распространения звука в скважинной жидкости. Значение скорости звука можно определить или приближенно выразить по идентифицируемому составу скважинной жидкости, либо ее можно измерить непосредственно временем поступившей информации. Так, в примере, в котором известно, что скорость распространения звука в морской воде равна около 1500 м/сек, резонансная частота перфорационного канала равна 1666 Гц, длину полости перфорационного канала можно приблизительно вычислить в значении 9 дюймов (предположив, что полость перфорационного канала относительно узкая при постоянном диаметре). Фактическую частоту можно модифицировать вязкостью воды, пористостью и твердостью стенки полости и формой перфорационного канала. Если эти воздействующие факторы пренебрежимо малы, то можно применить более усложненную математическую модель. Например, модель с конечным числом элементов для определения взаимосвязи между частотой и длиной перфорации. Согласно еще одному примеру, экспериментальные модели можно использовать для эмпирического определения взаимосвязи между частотой и длиной перфорации. Для выведения этой эмпирической взаимосвязи можно выполнить ряд лабораторных испытаний с разными материалами породы.
Согласно еще одному варианту осуществления, в котором измеряют несколько перфорационных каналов, не может быть одна определенная характеристическая частота. В соответствии с этим вариантом осуществления можно наблюдать несколько измерений минимального затухания на разных частотах, из которых каждая будет соответствовать разной длине перфорации. Доминирующую частоту можно использовать для определения средней глубины перфорации.
Обращаясь к фиг.5: согласно еще одному варианту осуществления настоящего изобретения система для определения глубины проникновения перфорационного канала 140 в стволе скважины 100 содержит акустический передатчик 200 и акустический приемник 210. Акустический передатчик 200 установлен над (или под) перфорационным каналом 140 (или группой перфорационных каналов) в стволе скважины 100; и акустический приемник 210 установлен под (или над) перфорационным каналом 140 - напротив акустического приемника 200. В некоторых вариантах осуществления акустический передатчик 200 и акустический приемник 210 можно соединить друг с другом общей линией 220 связи и/или электропитания, проходящей с поверхности, и прикрепить их на ней (фиг.4). Согласно другим вариантам осуществления акустический передатчик 200 и акустический приемник 210 не зависят друг от друга. Ствол скважины 100 может быть укреплен обсадной колонной, либо ствол может быть необсаженным или открытым. Акустический передатчик 200 может быть одиночным источником, дипольным источником, либо он может излучать акустические сигналы иным образом в любом направлении. Помимо этого, акустический передатчик может быть выполнен с возможностью передачи акустического сигнала на разных частотах. В некоторых вариантах осуществления акустическим передатчиком/приемником может быть ретранслятор. В других вариантах осуществления акустическим передатчиком/приемником может быть преобразователь (например, пьезопреобразователь). Этот преобразователь может содержать пьезоэлемент, который преобразует электрические сигналы в механические колебания или акустические сигналы (в режиме передачи) и механические колебания или акустические сигналы - в электрические сигналы (в режиме приема).
Обращаясь к фиг.6: вариант осуществления системы определения глубины проникновения перфорационного канала, в работе, включает в себя источник акустической волны, выдающий акустический сигнал на изменяемых частотах, и акустический приемник. Ствол скважины содержит скважинную жидкость с известным или определяемым значением (с) скорости звука, распространяемой в ней. Источник акустических волн и акустический приемник установлены в перфорированном стволе скважины таким образом, что находятся по разные стороны от перфорационного канала (или группы перфорационных каналов), таким образом перекрывая этот канал. Источник акустических волн выдает сигнал выбранной частоты, принимаемый акустическим приемником. Частота сигнала в источнике изменяется, и приемник контролируется на детектирование разницы мощности (или уровня) принимаемого сигнала. При приближении выдаваемой источником частоты к резонансной частоте перфорационного канала возникнет сильное затухание. Резонансная частота (fp) указана в точке максимального затухания. Наконец, глубину проникновения данного перфорационного канала можно вычислить согласно следующей формуле:
P=c/(4·fp).
Согласно другим вариантам осуществления настоящего изобретения передатчик (для выдачи акустического сигнала предварительно заданного уровня) и приемник (для приема акустического сигнала приемной интенсивности уровня) можно посредством линии связи и/или электропитания подключить к находящемуся на поверхности контроллеру и контролирующей системе для измерения глубины полости в стволе скважины. Передатчик и приемник могут быть взаимно соединены этой линией, либо соединены автономно с находящимися на поверхности контроллером и контролирующей системой. Контроллер можно использовать для регулирования частоты и/или интенсивности акустического сигнала, выдаваемого передатчиком. Систему контролирования можно использовать для слежения за интенсивностью акустического сигнала, обнаруживаемого приемником. Согласно некоторым вариантам осуществления контроллер и система контролирования содержит программируемый логический контроллер (ПЛК) для регулирования значения частоты выдаваемого акустического сигнала и для сравнения значения выдаваемого уровня со значением принимаемого уровня. ПЛК поэтому может определять резонансную частоту полости, измеряемую в точке максимального затухания, и может использовать это определение частоты для вычисления глубины полости и сообщить это значение оператору на поверхность. ПЛК можно запрограммировать на выполнение этих операций (например, с помощью средств программного обеспечения). Здесь термин «механизм на поверхности» обозначает любое устройство, находящееся на поверхности, на котором посредством линии механически крепится передатчик и/или приемник, и которое осуществляет связь с ними, запитывает, регулирует и/или контролирует указанные передатчик и/или приемник. В альтернативном варианте осуществления ПЛК расположен в скважине (например, встроен в передатчик или приемник), и передатчик и приемник взаимно соединены таким образом, что определение резонансной частоты полости и вычисление глубины полости можно осуществлять в скважине. В этом варианте осуществления передатчик и приемник могут быть подключены к устройству отображения на поверхности, чтобы указывать вычисляемую глубину полости. Соединение может быть непосредственным электрическим или волоконно-оптическим соединением, либо линией радиосвязи (например, радиочастотной или электромагнитной связью).
В других вариантах осуществления частотой акустического сигнала, выдаваемого передатчиком, может манипулировать непосредственно оператор; и уровень (интенсивность) выдаваемого сигнала можно сравнивать с уровнем сигнала, принимаемого приемником. При детектировании максимального затухания оператор определяет резонансную частоту полости. Затем оператор может вычислить глубину полости в стволе скважины. В каждом из излагаемых выше вариантах осуществления ПЛК или оператор могут вычислить глубину полости по следующей формуле: P=c/(4·fp), где Р - глубина полости, с - скорость звука во флюиде в стволе скважины, и fp - определенная резонансная частота полости.
Хотя варианты осуществления настоящего изобретения раскрыты и пояснены относительно определения глубины перфорационного канала в скважине, предполагается, что описываемые здесь системы, устройства и способы можно использовать и для определения глубины любых полостей в скважине, включая, помимо прочего, перфорационные каналы, полости в пласте, размер разрыва пласта и пр.
Выше приводится подробное описание только нескольких приводимых в качестве примера вариантов осуществления настоящего изобретения, но специалистам в данной области техники будет ясно, что в рамках признаков и преимуществ настоящего изобретения, обладающих новизной, возможны многие модификации. Соответственно, подразумевается, что все эти модификации входят в объем настоящего изобретения, определяемого излагаемой ниже его формулой. Предполагается, что в формуле ее пункты «средство плюс функция» включают в себя описываемые здесь структуры как выполняющие упоминаемые функции; и не только структурные эквиваленты, но также и эквивалентные структуры. Так, например, хотя гвоздь и винт могут и не быть структурными эквивалентами в том смысле, что гвоздь использует цилиндрическую поверхность для скрепления вместе деревянных деталей, тогда как винт использует спиральную поверхность при скреплении вместе деревянных деталей, при этом гвоздь и винт могут быть эквивалентными структурами. Заявитель прямо выраженным образом не имеет намерения ссылаться на Раздел 35 Кодекса законов США, параграф 112, пункт 6 для каких бы то ни было ограничений указываемых здесь притязаний, за исключением тех, в которых пункты формулы прямо выраженным образом используют фразу «средство для» вместе с относящейся к нему функцией.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ И УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ЗАПОЛНЕННОГО ТЕКУЧЕЙ СРЕДОЙ СТВОЛА СКВАЖИНЫ | 2008 |
|
RU2414596C1 |
БЕСПРОВОДНОЕ ИНИЦИИРОВАНИЕ СКВАЖИННОГО ПЕРФОРАТОРА | 2008 |
|
RU2493358C2 |
ПОСТОЯННЫЙ СКВАЖИННЫЙ РЕЗОНАНСНЫЙ ИСТОЧНИК | 2004 |
|
RU2330309C2 |
СПОСОБ И УСТРОЙСТВО СТРУЙНОГО КОМБИНИРОВАННОГО ПАРАМЕТРИЧЕСКОГО ИЗЛУЧАТЕЛЯ ДЛЯ ГЕНЕРИРОВАНИЯ И МОДУЛЯЦИИ ВОЛН ДАВЛЕНИЯ В СТВОЛЕ НАГНЕТАТЕЛЬНОЙ СКВАЖИНЫ | 2016 |
|
RU2653205C2 |
СПОСОБ И ИНСТРУМЕНТАЛЬНАЯ КОЛОННА ДЛЯ ОБРАБОТКИ СКВАЖИН ДЛЯ УЛУЧШЕНИЯ СООБЩЕНИЯ ПЛАСТА СО СТВОЛОМ СКВАЖИНЫ (ВАРИАНТЫ) | 2004 |
|
RU2299976C2 |
СПОСОБ ПЕРФОРАЦИИ СТВОЛА СКВАЖИНЫ | 1990 |
|
RU2017944C1 |
Способ генерирования и модуляции волн давления в стволе нагнетающей скважины и устройство для его осуществления | 2022 |
|
RU2789492C1 |
СИСТЕМА И СПОСОБ ЗАКАНЧИВАНИЯ СКВАЖИН, ИМЕЮЩИХ НЕСКОЛЬКО ЗОН (ВАРИАНТЫ) | 2005 |
|
RU2310066C2 |
СВЯЗЬ ЧЕРЕЗ ЗАЩИТНУЮ ОБОЛОЧКУ ЛИНИИ | 2011 |
|
RU2564040C2 |
СПОСОБ ГАЗОИМПУЛЬСНОЙ ОБРАБОТКИ ГАЗОНЕФТЕДОБЫВАЮЩИХ СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2328594C2 |
Группа изобретений относится к исследованию скважин и может быть использовано для определения глубины полости в стволе скважины, например, перфорации. Вблизи полости располагают источник акустических волн и на противоположной стороне полости вблизи нее располагают приемник акустических волн. Источник акустических волн выполнен с возможностью выдачи акустического сигнала на выбранной частоте и с предварительно заданной интенсивностью сигнала, при этом источник акустических волн выполнен с возможностью изменения указанной частоты. Приемник акустически волн выполнен с возможностью детектирования значительного ослабления интенсивности принимаемого акустического сигнала при изменении частоты. Определяют частоту, на которой обнаружено значительное ослабление интенсивности, и по данной частоте вычисляют глубину полости. Группа изобретений направлена на увеличение надежности и точности определения глубины полости. 4 н. и 11 з.п. ф-лы. 8 ил.
P=c/(4·fp),
где Р глубина вычисляемой полости, с - скорость распространения акустического сигнала в стволе скважины, и fp - определенная частота акустического сигнала, выдаваемого источником акустических волн, когда интенсивность принимаемого акустического сигнала, по существу, максимально затухает.
P=c/(4·fp),
где с - известная скорость акустического сигнала во флюиде, находящемся в стволе скважины.
P=c/(4·fp),
где Р - вычисляемая глубина полости, с - скорость акустического сигнала в стволе скважины, и fp - определенная частота акустического сигнала, выдаваемого источником акустических волн, когда интенсивность принимаемого акустического сигнала, по существу, максимально затухает.
US 5218573 А, 08.06.1993 | |||
Способ изучения донных отложений | 1991 |
|
SU1806388A3 |
УСТРОЙСТВО АКУСТИЧЕСКОГО КАРОТАЖА | 0 |
|
SU361277A1 |
АКУСТИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ОБЪЕМНЫХ ПОЛОСТЕЙ В ОКОЛОСКВАЖИННОМ ПРОСТРАНСТВЕ ПЕРФОРИРОВАННОЙ СКВАЖИНЫ | 2000 |
|
RU2174242C1 |
ПРОГРАММИРУЕМЫЙ ЛОГИЧЕСКИЙ КОНТРОЛЛЕР | 1995 |
|
RU2101757C1 |
US 4858130 A, 15.08.1989 | |||
US 4949316 А, 14.08.1990 | |||
DE 4203967 A1, 12.08.1993. |
Авторы
Даты
2007-08-27—Публикация
2005-07-20—Подача