Изобретение относится к оптическим системам, а именно к сетям связи, и может быть использовано в существующих и создаваемых синхронных волоконно-оптических сетях связи (СВОСС).
Известен способ резервирования информационных потоков в синхронных волоконно-оптических сетях связи (см., например, Слепов Н.Н. Синхронные цифровые иерархии SDH. М.: ЭКО-ТРЕНДЗ, 1999, с.56-58; Баркова И.В., Сергеева Т.П. Математические модели оценки надежности кольцевых структур в сетях SDH. - Электросвязь, 2001, №11, с.36-38).
В данном способе устанавливают резервные оптические волокна на каждое основное оптическое волокно сети связи. Затем передают оптические сигналы между узлами сети связи одновременно по основному и резервному оптическому волокну. На приемной стороне сравнивают уровни принятых сигналов и для дальнейшей обработки выбирают сигнал с более высоким уровнем оптической мощности.
Недостатком указанного способа резервирования является высокая стоимость его реализации за счет необходимости полного дублирования сетевых элементов.
Известен также способ резервирования информационных потоков (см., например, Шмалько А.В. Цифровые сети связи: основы планирования и построения. М.: ЭКО-ТРЕНДЗ, 2001, с.186-188), заключающийся в установке резервных оптических волокон на каждое основное оптическое волокно сети связи и передаче оптических сигналов только по основному волокну. В оптическом волокне измеряют уровень оптической мощности и при ее потере формируют управляющий сигнал, по команде которого передача сигнала осуществляется по резервному оптическому волокну.
Недостатком указанного способа резервирования является высокая стоимость его реализации за счет необходимости полного дублирования сетевых элементов.
Наиболее близким по своей технической сущности к заявляемому способу резервирования в СВОСС с системами спектрального уплотнения является способ резервирования по патенту US №6046832 от 04.04.2000, МПК 7 Н04В 10/20.
Способ-прототип заключается в том, что из множества колец СВОСС выделяют кольцо защиты с двумя и более узлами сети связи, содержащими терминалы спектрального уплотнения. При наличии терминалов спектрального уплотнения на каждом узле кольца защиты устанавливают резервный терминал спектрального уплотнения, оптический маршрутный коммутатор, оптический многопортовый коммутатор. Соединяют выходы основного и резервного терминалов спектрального уплотнения с входами оптического маршрутного коммутатора, выходы которого соединяют с оптическими волокнами, составляющими кольцо защиты. Входы оптического многопортового коммутатора соединяют с выходами мультиплексоров ввода-вывода СВОСС. Кроме того, входы резервных терминалов спектрального уплотнения соединяют с выходами оптического многопортового коммутатора.
В процессе работы сети связи в оптических волокнах измеряют уровень оптической мощности и при ее потере формируют управляющий сигнал, по команде которого включают резервные терминалы спектрального уплотнения. Входы резервных терминалов спектрального уплотнения, находящихся на одном узле, соединяют между собой через оптический многопортовый коммутатор. Затем вход оптического маршрутного коммутатора, на который поступает информационный трафик с выхода терминала спектрального уплотнения, коммутируют на резервное оптическое волокно кольца защиты, по которому данный информационный трафик передают на узел сети связи, на котором установлен терминал спектрального уплотнения.
Данный способ резервирования позволяет защитить информационные потоки, передаваемые по линиям спектрального уплотнения, что в целом повышает надежность сети связи.
Недостатком способа-прототипа является то, что на его реализацию требуются высокие материальные затраты. Это обусловлено необходимостью использования дополнительных функциональных устройств и резервных оптических волокон на каждом участке сети связи при реализации данного способа.
Целью заявленного изобретения является разработка способа резервирования в СВОСС, обеспечивающего сокращение материальных затрат на построение сети связи, при сохранении ее надежности.
Заявленный способ расширяет арсенал средств данного назначения.
Поставленная цель достигается тем, что в известном способе резервирования в СВОСС, содержащей N≥4 узлов, объединенных отрезками оптического кабеля (ООК), выполненного в виде совокупности оптических волокон, и снабженных оптическими маршрутными коммутаторами, входы которых подключены к мультиплексорам ввода-вывода сети связи, оптическими маршрутными коммутаторами, выходы которых подключены к соответствующим оптическим волокнам, терминалами спектрального уплотнения, входы и выходы которых подключены соответственно к выходам оптических маршрутных коммутаторов и входам оптических многопортовых коммутаторов, заключающемся в том, что измеряют уровни мощности, проходящей в оптических волокнах, при потере которой формируют управляющий сигнал на включение терминала спектрального уплотнения, предварительно для каждого ООК bm, где m=1,2,...,М, а М - общее число ООК, объединяющих узлы сети связи, задают вероятность безотказной работы рm. Выделяют пары корреспондирующих узлов Zi,j, где i=1,2,...,N, j=l,2,...,N, i≠j. Задают предельно допустимое значение ранга rдоп пути между любой парой корреспондирующих узлов. Выделяют совокупности U1, U2,...Uλ,..., UΛ OOK сети связи, где Λ - общее число совокупностей, выход из строя каждой из которых разрывает все пути между корреспондирующими узлами сети связи и значение суммарного показателя структурной надежности (СПСН) которых Рλ<Рдоп, где Рдоп - минимально допустимое значение СПСН совокупности Uλ OOK сети связи. Для чего формируют структурную матрицу сети связи G=||εi,j|| размером N×N, где εi,j - элемент матрицы, принимающий значение εi,j=0 при i=j или i и j не принадлежащих одному OOK и принимающий значение εi,j=bm, если i и j принадлежат одному OOK. По сформированной структурной матрице сети связи G=||εi,j|| вычисляют суммарную совокупность путей TΣ между всеми парами корреспондирующих узлов сети связи, ранг которых не превышает ϒдоп. С этой целью структурную матрицу сети связи G=||εi,j|| возводят в степень ϒдоп путем логического перемножения элементов i-ой строки и j-го столбца с последующим суммированием результатов перемножения. Из возведенной в степень ϒдоп структурной матрицы сети связи выделяют совокупность элементов, отличающихся от нуля. В каждом выделенном элементе его слагаемые определяют совокупность путей между соответствующей парой Zi,j корреспондирующих узлов сети связи и сумма которых составляет значение TΣ. Затем формируют матрицу путей размером М·TΣ между всеми парами корреспондирующих узлов сети связи, где - элемент матрицы, принимающий значение , если OOK bm принадлежит пути , а в противном случае . Из сформированной матрицы путей выделяют совокупности U1, U2,...Uλ,..., UΛ OOK сети связи, при выходе из строя каждой из которых в сети связи разрываются все ранее найденные пути TΣ между корреспондирующими узлами сети связи. Для этого логически перемножают ООК сети связи, соответствующие элементам матрицы путей , значения которых равно единице и принадлежащие одному пути между парой Zi,j корреспондирующих узлов сети связи. После чего суммируют логические произведения и в полученной логической сумме заменяют знаки сложения на знаки умножения и, наоборот, а затем приводят подобные слагаемые. Полученные слагаемые в логической сумме определяют совокупности U1, U2,...Uλ,..., UΛ ООК сети связи, при выходе из строя каждой из которых в сети связи разрываются все ранее найденные пути TΣ между корреспондирующими узлами сети связи. После чего для каждой совокупности ООК Uλ вычисляют значение СПСН Рλ по формуле и окончательно выделяют совокупности ООК сети связи, для которых выполняется условие Рλ<Рдоп. Терминалы спектрального уплотнения устанавливают на узлах, инцидентных ООК сети связи, которые составляют выделенные совокупности ООК сети связи. При потере оптической мощности в одном из оптических волокон ООК, входящего в одну из выделенных совокупностей Uλ ООК сети связи, сформированный управляющий сигнал передают на управляющие входы терминала спектрального уплотнения, оптического маршрутного коммутатора и оптического многопортового коммутатора. По принятым управляющим сигналам включают терминал спектрального уплотнения, коммутируют вход оптического маршрутного коммутатора, на который поступает информационный трафик с выходом, соединенным с входом терминала спектрального уплотнения, выход которого подключен к входу оптического многопортового коммутатора, вход которого затем коммутируют на рабочее оптическое волокно, по которому данный информационный трафик передают на узел сети связи, на котором установлен терминал спектрального уплотнения.
Сопоставительный анализ заявляемого решения с прототипом показывает, что предлагаемый способ отличается от известного выделением совокупностей ООК сети связи, выход из строя каждой из которых разрывает все пути между корреспондирующими узлами сети связи и значение СПСН которых меньше допустимого, а также установкой терминалов спектрального уплотнения на узлах сети связи, инцидентных ООК сети связи, которые составляют выделенные совокупности, с последующим переключением информационного графика на терминал спектрального уплотнения в случае потери оптической мощности в одном из оптических волокон.
Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие заявленного способа условию патентоспособности «новизна».
Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность отличительных существенных признаков, обусловливающих тот же технический результат, который достигнут в заявляемом способе. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».
Заявленный способ поясняется чертежами, на которых показано:
фиг.1 - вариант фрагмента СВОСС ячеистой структуры;
фиг.2 - состав и соединение оборудования на узлах, инцидентных ООК сети связи, составляющим выделенную совокупность;
фиг.3 - структура фрагмента сети связи, представляемая в виде графа;
фиг.4 - совокупность путей между парами корреспондирующих узлов сети связи;
фиг.5 - совокупности ООК сети связи, при выходе из строя каждой из которых разрываются все пути между парами корреспондирующих узлов сети связи;
фиг.6 - совокупность ООК сети связи, при выходе из строя которой разрываются все пути между парами корреспондирующих узлов сети связи и значение суммарного показателя структурной надежности которой меньше допустимого;
фиг.7 - передача информационного трафика между узлами сети связи а2 и а3 по рабочему волокну 3''2 при выходе из строя оптического волокна 3'2.
В общем случае, в СВОСС для защиты высокоскоростных информационных потоков используют способы защитного резервирования и резервного восстановления, что повышает надежность сети связи. С другой стороны, применение данных способов резервирования приводит к необоснованным материальным затратам. Следовательно, требуется разработать способ защиты информационных потоков в СВОСС, который позволит снизить экономические затраты на его реализацию и в то же время сохранить надежность сети связи на требуемом уровне, что и предлагается в заявленном решении.
Рассмотрим реализацию заявляемого способа на примере СВОСС, показанной на фиг.1. Сеть связи состоит из двух колец 11 и 12, в каждом из которых осуществляется передача синхронных сигналов со скоростью 155 Мбит/с. Первое кольцо l1 и второе кольцо 12 содержат мультиплексоры ввода-вывода 211, 221, 231, 241 и 212, 222, 232, 242, соединенные оптическими волокнами соответственно 3'1, 3'2, 3'3, 3'4 и 3''1, 3''2, 3''3, 3''4. Пары оптических волокон 3'1-3''1, 3'2-3''2, 3'3-3''3, 3'4-3''4 образуют соответствующие ООК сети связи b1, b2, b3, b4 (см. также фиг.3). Пары мультиплексоров ввода-вывода 211-212, 221-222, 231-232, 241-342 расположены на соответствующих узлах сети связи а1, а2, а3, а4 и в каждой паре соединены между собой линиями внутреннего монтажа 4.
Кроме того, на узлах сети связи в общем случае установлены (фиг.2):
- оптические маршрутные коммутаторы (ОМК) 5,6;
- терминал спектрального уплотнения (ТСУ) 7;
- оптический многопортовый коммутатор (ОМПК) 8;
- датчики оптической мощности (ДОМ) 9, 10;
- блок управления (БУ) 11.
Перечисленные структурные элементы, используемые в оптоволоконных сетях связи, известны. Например, в книге: Фидман Р. «Волоконно-оптические системы связи. 3-е доп. изд. - М.: Техносфера, 2006, описаны принцип работы и схемы: оптических маршрутного и многопортового коммутаторов на с.413-417; мультиплексоры ввода-вывода на с.418-420; оптические измерители мощности на с.392-394; оптические кабели на с.49-53. В качестве терминала спектрального уплотнения могут быть использованы мультиплексоры ввода-вывода. Блок управления реализует функцию формирования импульса напряжения (тока) при пропадании мощности в оптическом волокне, используемого для соответствующих коммутаций исполнительных элементов.
Выходы мультиплексоров ввода-вывода 2 соединены с входами соответствующих ОМК 5, 6. Один из выходов каждого ОМК 5, 6 соединен с входом ТСУ 7, а другой - с входом ОМПК 8. Выход ТСУ 7 соединен с входом ОМПК 8, выходы которого соединены с волокнами ООК 3.
Кроме того, выходы ДОМ 9,10 соединены с входами БУ 11, выходы которого соединены с управляющими входами ОМК 5, 6, ТСУ 7 и ОМПК 8.
Для выбранной структуры сети связи (фиг.3) с числом узлов N=4 и ООК М=4 предварительно находят совокупности U1, U2,...Uλ,..., UΛ ООК сети связи, выход из строя каждой из которых разрывает все пути между корреспондирующими узлами сети связи и значение СПСН Рλ которых меньше допустимого, т.е. Рλ<Рдоп.
Для этого задают вероятности безотказной работы каждого ООК, например, равными р1=0,9, р2=0,4, р3=0,9 р4=0,3 и минимально допустимое значение СПСН Рдоп=0,6 совокупности Uλ OOK сети связи. Затем выделяют пары Z1,3 и Z2,4 корреспондирующих узлов сети связи. Задают предельно допустимое значение ранга ϒдоп=2 пути между любой парой корреспондирующих узлов. Ранг пути - это число OOK сети связи, входящих в данный путь. Величина ранга пути определяется требованиями по качеству организуемых каналов на сети связи (см., например, Давыдов Г.Б., Рогинский В.Н., Толчан А.Я. Сети электросвязи. М.: Связь, 1977, с.139).
Затем формируют структурную матрицу сети связи G=||εi,j|| размером N×N. В данном случае N=4, т.е. матрицу размером 4×4
В матрице G=||εi,j|| ее элемент εi,j, где i,j - номера узлов, т.е. i, j=1,2,3,4, принимает значение εi,j=0 при i=j или если i и j не принадлежат одному OOK и принимает значение εi,j=bm, где m - номер OOK, т.е. m=1,2,3,4, если i и j принадлежат одному OOK.
По сформированной структурной матрице сети связи G=||εi,j|| вычисляют суммарную совокупность путей TΣ между всеми парами корреспондирующих узлов сети связи, ранг которых не превышает ϒдоп=2.
С этой целью структурную матрицу сети связи G=||εi,j|| возводят в степень ϒдоп=2 путем логического перемножения элементов i-ой строки и j-го столбца с последующим суммированием результатов перемножения, т.е.
где знак ∨ означает операцию логического сложения.
В возведенной в степень ϒдоп=2 структурной матрице сети связи выделяют совокупность элементов, отличающихся от нуля, которые в свою очередь определяют совокупность и путей между парой Z1,3 и Z2,4 корреспондирующих узлов сети связи (здесь - означает путь с номером 1 между парой Z1,3 корреспондирующих узлов сети связи), и общая сумма путей TΣ будет составлять TΣ=4 (фиг.4).
Затем формируют матрицу путей размером M·ТΣ между всеми парами корреспондирующих узлов сети связи. В данном случае М=4, TΣ=4, т.е. матрицу размером 4·4
В матрице ее элемент , где i,j- номера узлов, т.е. i,j=1,2,3,4, f - номер пути между парой Zi,j корреспондирующих узлов сети связи, т.е. f=1,2, m - номер ООК, т.е. m=1,2,3,4, принимает значение , если ООК с номером m принадлежит пути с номером f между парой Zi,j корреспондирующих узлов сети связи, а в противном случае .
Из сформированной матрицы путей выделяют совокупности U1, U2,...Uλ,..., UΛ OOK сети связи, при выходе из строя каждой из которых в сети связи разрываются все ранее найденные пути TΣ между корреспондирующими узлами сети связи. Для этого логически перемножают OOK сети связи, соответствующие элементам матрицы путей , значения которых равно единице и они принадлежат одному пути между парой Zi,j корреспондирующих узлов сети связи, после чего суммируют логические произведения
В полученной логической сумме заменяют знаки сложения на знаки умножения и, наоборот, а затем приводят подобные слагаемые
Полученные слагаемые в логической сумме определяют совокупности U1={b1·b3} и U2={b2·b4} OOK сети связи, при выходе из строя каждой из которых в сети связи разрываются все ранее найденные пути между корреспондирующими узлами сети связи (фиг.5).
После чего для каждой совокупности OOK U1={b1·b3} и U2={b2·b4} вычисляют значение суммарного показателя структурной надежности Рλ по формуле , т.е.
и окончательно выделяют совокупность U2={b2·b4} OOK сети связи (фиг.6), для которой выполняется условие Р2<0,6.
После этого на узлах а2 и а3, инцидентных ООК b2, а также на узлах а1, и а4, инцидентных ООК b4 (фиг.2), устанавливают ТСУ 7, два ОМК 5, 6, ОМПК 8, БУ 11 и ДОМ 9, 10.
При потере оптической мощности в оптическом волокне 3'2 (на фиг.2 отмечено крестиком, на фиг.7 показано пунктиром) управляющий сигнал формируют в ДОМ 9, подключенных к этому волокну и расположенных на узлах а2 и a3. Затем управляющий сигнал передают на вход БУ 11, в котором формируют и передают сигналы на управляющие входы ТСУ 7, ОМК 5, 6 и ОМПК 8. По принятым управляющим сигналам включают ТСУ 7, коммутируют вход каждого ОМК 5, 6, на который поступает информационный трафик с мультиплексоров ввода-вывода 231, 232, с выходом, соединенным с входом ТСУ 7. Затем коммутируют вход ОМПК 8, на который поступает информационный трафик с выхода ТСУ 7, на рабочее оптическое волокно 3''2, по которому информационный трафик передают между узлами сети связи а2 и а3.
Например, при штатной работе сети связи информационный трафик передают между узлами сети связи a1-а3 и а2-а4 по соответствующим оптическим волокнам 3'1, 3'2, 3'3, 3'4 и 3''1, 3''2, 3''3, 3''4 (фиг.7). При потере оптической мощности в оптическом волокне 3'2 информационный трафик, предназначенный для передачи по этому оптическому волокну, переключают на оптическое волокно 3''2, по которому осуществляется информационный обмен между узлами сети связи а2 и а3.
Из рассмотренного примера видно, что при практически двукратном снижении числа функциональных устройств и оптических волокон в СВОСС, в случае выхода из строя отдельных сетевых элементов, фактически сохраняется надежность сети связи, что указывает на возможность достижения сформулированного технического результата.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РЕЗЕРВИРОВАНИЯ В ОПТИЧЕСКОЙ СЕТИ СВЯЗИ С СИСТЕМАМИ СПЕКТРАЛЬНОГО УПЛОТНЕНИЯ | 2021 |
|
RU2779296C1 |
СПОСОБ РЕЗЕРВИРОВАНИЯ В ВОЛОКОННО-ОПТИЧЕСКОЙ СЕТИ СВЯЗИ СО СПЕКТРАЛЬНЫМ РАЗДЕЛЕНИЕМ КАНАЛОВ | 2023 |
|
RU2812146C1 |
СИСТЕМА ОПТИЧЕСКОЙ СВЯЗИ | 2006 |
|
RU2334359C1 |
Способ формирования соединений в ячеистой волоконно-оптической сети связи с системами спектрального уплотнения | 2024 |
|
RU2822786C1 |
ВОЛОКОННО-ОПТИЧЕСКАЯ СИСТЕМА СВЯЗИ | 2014 |
|
RU2576667C1 |
СПОСОБ ДИНАМИЧЕСКОЙ РЕКОНФИГУРАЦИИ ВОЛОКОННО-ОПТИЧЕСКОЙ СЕТИ СВЯЗИ С СИСТЕМАМИ СПЕКТРАЛЬНОГО УПЛОТНЕНИЯ | 2022 |
|
RU2794918C1 |
СПОСОБ ПЕРЕДАЧИ МУЛЬТИПРОТОКОЛЬНЫХ ИНФОРМАЦИОННЫХ ПОТОКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2481709C2 |
СПОСОБ МОНИТОРИНГА ХАРАКТЕРИСТИК ОПТИЧЕСКИХ ВОЛОКОН ВОЛОКОННО-ОПТИЧЕСКИХ ЛИНИЙ СВЯЗИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2023 |
|
RU2822691C1 |
СПОСОБ ПЕРЕДАЧИ МУЛЬТИПРОТОКОЛЬНЫХ ИНФОРМАЦИОННЫХ ПОТОКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2009 |
|
RU2421793C1 |
ОПТИЧЕСКАЯ СЕТЕВАЯ СИСТЕМА СВЯЗИ С ПРИЕМОПЕРЕДАЮЩИМ УСТРОЙСТВОМ ОПТИЧЕСКОГО ЛИНЕЙНОГО ТЕРМИНАЛА И СПОСОБ ЕЕ РАБОТЫ | 2011 |
|
RU2564100C2 |
Изобретение относится к оптическим системам, а именно к сетям связи, и может быть использовано в существующих и создаваемых синхронных волоконно-оптических сетях связи (СВОСС). Технический результат состоит в сокращении материальных затрат на построение сети связи при сохранении ее надежности. Для этого выделяют совокупности отрезков оптических кабелей сети связи, выход из строя каждой из которых разрывает все пути между корреспондирующими узлами сети связи и значение суммарного показателя структурной надежности которых меньше допустимого. А также технический результат заключается в установке терминалов спектрального уплотнения, оптических маршрутных коммутаторов, оптических многопортовых коммутаторов, датчиков оптической мощности и блоков управления на узлах сети связи, инцидентных отрезкам кабеля сети связи, которые составляют выделенные совокупности, с последующим переключением информационного трафика на терминал спектрального уплотнения в случае потери оптической мощности в одном из оптических волокон. 1 з.п. ф-лы, 7 ил.
US 6046832 В, 04.04.2000 | |||
НЕКООРДИНИРОВАННАЯ БЕСПРОВОДНАЯ МНОГОПОЛЬЗОВАТЕЛЬСКАЯ СИСТЕМА С ПИКОЯЧЕЙКАМИ СО СКАЧКООБРАЗНЫМ ИЗМЕНЕНИЕМ ЧАСТОТЫ | 1998 |
|
RU2201034C2 |
US 5287384 А, 15.02.1999 | |||
Прибор, замыкающий сигнальную цепь при повышении температуры | 1918 |
|
SU99A1 |
Авторы
Даты
2007-09-27—Публикация
2005-12-19—Подача