Предложение относится к области нефтедобычи, в частности к составам для кислотной обработки пластов, и может быть использовано для химического растворения пород и кольматирующих отложений в призабойной зоне нефтяного, газового и газоконденсатного пласта, а также может быть использовано в качестве технологической жидкости при перфорации обсадной колонны и гидроразрыве пластов.
Наиболее близким к предлагаемому техническому решению по назначению и технической сущности является состав для кислотной обработки призабойной зоны пласта, содержащий водный раствор соляной кислоты, технические лигносульфонаты и водорастворимые алифатические спирты (см. патент РФ №2013530, МПК Е21В 43/27, опубл. 30.05.94 г. Бюл. №10). Известный состав обладает в 13,7-32,7 раз более низкой скоростью реакции в отношении карбонатов, снижает фильтрацию в отработанном состоянии, стабилизирует отработанный кислотный раствор в отношении трехвалентного железа, имеет в 2,1-13 раз более высокие значения по вязкости по сравнению с традиционными кислотными составами.
Недостатками известного состава являются:
1. Относительно узкий диапазон изменения скорости реакции растворения карбонатной породы и вязкости состава, что ограничивает область его применения. Для различных геолого-физических условий эксплуатации скважин требуется возможность регулирования скорости растворения карбонатов от обычных (очень высоких) значений (15000-20000 г/м2·ч) до очень малых значений (200-500 г/м2·ч). Это свойство позволяет регулировать темп и глубину обработки продуктивного пласта. То же самое относится и к величинам вязкости. Практика показывает необходимость регулирования этого показателя от вязкости практически чистой кислоты (в пределах 1-5 мПа·с) до высоковязких композиций (с вязкостью до несколько тысяч мПа·с). Такой диапазон позволяет регулировать охват кислотным воздействием на пласты практически любого структурного типа, с любой расчлененностью и неоднородностью по проницаемости.
2. Недостаточная степень нейтрализации ионов трехвалентного железа, учитывая очень большое содержание железа в колонне насосно-компрессорных труб, по которой кислотный состав закачивается в пласт. Кроме этого, необходимо учитывать, что кислота дополнительно насыщается ионами железа при реакциях с породой пластов. Как следствие, образующийся дисперсный гидроксид железа выпадает в поровом пространстве пластов и закупоривает фильтрационные каналы. Нейтрализующая способность лигносульфонатов явно недостаточна для предотвращения этого негативного явления.
3. Не учитывается основной негативный процесс, а именно возможность образования в пласте эмульсий прямого и обратного типов, закупоривающих фильтрационные каналы и поры. Компоненты известного состава и, вообще, практически все кислотные составы в смеси с нефтью, пластовой водой, продуктами реакций, как правило, образуют высоковязкие блокирующие смеси и эмульсии.
4. Недостаточная способность выноса продуктов реакций из пластов после обработки и, как следствие, снижение конечной эффективности обработки. В данном составе предусмотрено снижение фильтрации отработанного состава из трещин в матрицу горной породы, однако этого эффекта недостаточно для полного удаления продуктов реакции. Для этого необходимо обеспечить снижение поверхностного межфазного натяжения на границе «порода-флюид», диспергирование, смачивание и вынос мелкодисперсных частиц и продуктов реакций при промывке и освоении скважин после обработки.
Техническая задача предлагаемого решения заключается в создании универсального, многоцелевого кислотного состава с улучшенными технологическими свойствами за счет увеличения диапазона регулирования скорости реакции растворения карбонатной породы, динамической вязкости, полного предотвращения выпадения кольматирующих гелеобразных осадков, ингибирования процесса эмульсиеобразования и полного выноса продуктов реакций из пласта в процессе освоения.
Указанная задача решается известным составом для кислотной обработки призабойной зоны пласта, содержащим водный раствор соляной кислоты, технические лигносульфонаты и водорастворимые алифатические спирты.
По первому варианту новым является то, что состав дополнительно содержит уксусную кислоту 80%-ной концентрации и деэмульгатор водорастворимый, а в качестве водного раствора соляной кислоты 20-28%-ной концентрации, в качестве водорастворимых алифатических спиртов - изопропиловый спирт или кубовые остатки бутиловых спиртов при следующем соотношении ингредиентов, об.%:
По второму варианту состав дополнительно содержит уксусную кислоту 80%-ной концентрации, деэмульгатор водорастворимый и водорастворимое поверхностно-активное вещество, в качестве которого используют неонол АФ9-12, или МЛ-81, или МЛ-81Б, или ФЛЭК-ДГ-002, а в качестве водного раствора соляной кислоты 20-28%-ной концентрации, в качестве водорастворимых алифатических спиртов - изопропиловый спирт или кубовые остатки бутиловых спиртов при следующем соотношении ингредиентов, об.%:
По третьему варианту состав дополнительно содержит уксусную кислоту 80%-ной концентрации, деэмульгатор водорастворимый и водный раствор фтористоводородной кислоты 70%-ной концентрации, а в качестве водного раствора соляной кислоты 20-28%-ной концентрации, в качестве водорастворимых алифатических спиртов - изопропиловый спирт или кубовые остатки бутиловых спиртов при следующем соотношении ингредиентов, об.%:
По четвертому варианту состав дополнительно содержит уксусную кислоту 80%-ной концентрации, деэмульгатор водорастворимый и полимер, в качестве которого используют водный раствор полиакриламида или водный раствор модифицированного крахмала, а в качестве водного раствора соляной кислоты 20-28%-ной концентрации, в качестве водорастворимых алифатических спиртов - изопропиловый спирт или кубовые остатки бутиловых спиртов при следующем соотношении ингредиентов, об.%:
Принципиальное отличие предлагаемого состава заключается в присутствии в рецептурах нетрадиционного компонента: деэмульгатора водорастворимого в сочетании с известными ингредиентами - соляной кислотой, уксусной кислотой, фтористоводородной кислотой, водорастворимыми спиртами, водорастворимыми ПАВами. При этом уксусная кислота выполняет нетрадиционную функцию нейтрализатора ионов железа, предотвращая тем самым ряд негативных процессов осаждения веществ в порах и кольматацию пласта.
Увеличение диапазона регулируемых технологических свойств и области применения состава по первому варианту достигается введением в основной компонент (соляную кислоту) нового набора ингредиентов при соответствующем их количественном соотношении. Это придает данному составу новое свойство - возможность регулирования скорости реакции с карбонатами в диапазоне необходимых низких значений этого параметра, в частности данный состав обладает в 30-100 раз более низкой скоростью реакции по сравнению с традиционными составами - водным раствором соляной кислоты, а также композициями данного раствора со спиртами и ПАВами.
В основе этого эффекта лежит способность компонентов лигносульфонатов технических (соли лигносульфоновых кислот, моносульфитный щелок, сахара, остатки целлюлозы, другие высокомолекулярные соединения) адсорбироваться на поверхности породы, создавая экранирующий слой. Кубовые остатки бутиловых спиртов и изопропиловый спирт усиливают эффект за счет изменения смачиваемости поверхности породы.
Состав по второму варианту позволяет регулировать скорость реакции, вязкость, межфазное натяжение, при этом замедляя скорость реакции от 2 до 6 раз, увеличивая динамическую вязкость в 2-4 раза, снижая поверхностное натяжение в 2-3 раза (по сравнению с традиционными известными составами).
Состав по третьему варианту обеспечивает обработку как карбонатных пород с увеличенным содержанием глинистых компонентов, так и терригенных песчаников, полимиктовых пород-коллекторов, что значительно расширяет область использования состава.
Состав по четвертому варианту обеспечивает увеличение диапазона регулирования вязкости от 50 до несколько тысяч мПа·с при различных скоростях сдвига, при одновременном снижении скорости реакции в 6-15 раз по сравнению с известным составом. Этот технический эффект значительно расширяет область применения состава как в технологическом плане: повышается эффективность таких операций, как направленные кислотные обработки, кислотный гидроразрыв пласта, глубокие кислотные обработки, кислотное гидромониторное вскрытие и обработка пласта и ряда других операций, так и в плане геолого-физических условий: от порово-трещиноватых до кавернозно-трещиноватых пород.
Анализ научно-технической и патентной литературы не позволил выявить идентичную совокупность существенных признаков, решающих аналогичную техническую задачу. На основании этого считаем, что предлагаемое нами техническое решение отвечает критериям "новизна" и "изобретательский уровень".
Примеры приготовления составов.
Пример 1. Концентрированную соляную кислоту разбавляли пресной водой до 20-28%-ной концентрации по объему. К техническим лигносульфонатам при постоянном перемешивании на лабораторной мешалке прибавляли кубовые остатки бутилового спирта или изопропиловый спирт, деэмульгатор водорастворимый, уксусную кислоту 80%-ной концентрации. Перемешивали компоненты в течение 1 мин. Затем в этот раствор вводили приготовленный раствор соляной кислоты и перемешивали в течение 1 минуты до получения однородного состава.
Пример 2. К техническим лигносульфонатам при постоянном перемешивании прибавляли изопропиловый спирт или кубовые остатки бутилового спирта, затем неонол АФ9-12, или МЛ-81, или МЛ-81Б, или ФЛЭК-ДГ-002, затем деэмульгатор водорастворимый, затем водный раствор уксусной кислоты 80%-ной концентрации. Перемешивали в течение 1 мин. Затем в этот раствор вводили водный раствор соляной кислоты 20-28%-ной концентрации. Перемешивали в течение 1 мин до получения однородного состава.
Пример 3. К техническим лигносульфонатам при постоянном перемешивании прибавляли изопропиловый спирт или кубовые остатки бутилового спирта, затем при перемешивании прибавляли деэмульгатор водорастворимый, водный раствор уксусной кислоты 80%-ной концентрации. Перемешивали 1 мин. Затем вводили водный раствор фтористоводородной кислоты 70%-ной концентрации. Перемешивали 1 мин. Затем вводили водный раствор соляной кислоты 20-28%-ной концентрации. Перемешивали 1 мин до получения однородного состава.
Пример 4. К техническим лигносульфонатам при постоянном перемешивании прибавляли изопропиловый спирт или кубовые остатки бутилового спирта, затем при перемешивании прибавляли деэмульгатор водорастворимый, уксусную кислоту 80%-ной концентрации. Перемешивали 1 мин. Затем вводили водный раствор соляной кислоты 20-28%-ной концентрации. Перемешивали 1 мин до получения однородного состава. При перемешивании дозировали водный раствор полимера (полиакриламида или модифицированного крахмала).
Динамическую вязкость состава определяли на капиллярном вискозиметре ВПЖ-4 и ротационном Реотест-2.
Скорости реакции состава оценивали массовым методом, при котором кубик мрамора с определенной площадью и массой помещали в испытуемый состав. По изменению массы за фиксированное время определяли скорость растворения мрамора.
Степень стабилизации состава по отношению к ионам железа определяли визуально при дозировании в состав окислов железа и по замеру объема выпавшего в осадок гидроксида железа.
Межфазную активность и проникающую способность состава в поровое пространство нефтенасыщенной части пласта оценивали по величине межфазного натяжения на границе «состав-нефть».
Степень предотвращения образования блокирующих пласт высоковязких смесей и эмульсий при контакте состава с нефтью оценивали визуально и по величине вязкости продуктов реакции.
Состав и свойства предлагаемого и известного по прототипу составов приведены в таблицах 1 и 2.
кг/м2·ч
Fe, см3
Для приготовления составов и их испытаний были использованы следующие материалы:
нефть девонская, плотностью 859 кг/м3, вязкостью 14-18 мПас;
лигносульфонаты технические являются отходом при сульфитной варке целлюлозы на ряде целлюлозно-бумажных комбинатов страны и являются побочным продуктом после брожения сахаров в сульфитных щелоках, отгонки спирта, последующего упаривания и нейтрализации гидроокисью натрия или аммиака. Согласно ТУ 13-0281036-05-89, ТУ 13-7308001-453-84 «Щелок черный моносульфитный» продукт представляет собой однородную вязкую жидкость темно-коричневого цвета с небольшой кислотностью;
кислота соляная ингибированная ТУ 2458-017-12966038-2002; ТУ 2122-205-00203312-2000;
неонол АФ9-12 ТУ 38.507-63-171-91;
препараты МЛ-81, МЛ-81Б ТУ 2481-007-48482528-99, ТУ 2481-048-04689375-97;
препарат ФЛЭК-ДГ-002 ТУ 2483-004-24084384-00;
модифицированный крахмал МПК-001;
полиакриламид ТУ 6-01-1049-76, импортный полиакриламид ПДА-1020, ПДА-1041; фтористоводородная кислота ТУ 48-5-184-78; кубовые остатки бутиловых спиртов; изопропиловый спирт, деэмульгаторы водорастворимые ДИН-4, СНПХ 4501, РИФ, Реапон-4в.
Приведенные в табл.1 и 2 данные свидетельствуют о том, что варианты предлагаемого состава по сравнению с известным составом по прототипу обладают более широким диапазоном регулирования скорости реакции как в сторону снижения скорости растворения, так и в сторону увеличения темпа растворения карбонатного материала пласта. Динамическая вязкость у заявляемых составов регулируется в диапазоне от 10 до 2250 мПа·с, а у прототипа вязкость регулируется в пределах 75-182 мПа·с. Предлагаемые составы не образуют осадков гидроксида железа, что позволяет исключить закупорку поровых каналов пласта. Качественно новым является степень снижения межфазного натяжения предлагаемых составов на границе с нефтью. Так, диапазон изменения этого важного параметра составляет от 0,9 до 0,08 мН/м, в то время как у известного состава он гораздо выше (1,29-1,88 мН/м). Вязкость продуктов реакции в смеси с нефтью у предлагаемых составов гораздо ниже и сравнима с вязкостью самой нефти (12-31 мПа·с), в то время как у известного состава вязкость продуктов реакции высокая (58-84 мПа·с).
Результаты исследований показали оптимальность содержания ингредиентов составов в указанных пределах. Увеличение содержания компонентов в составах не целесообразно, т.к. снижается технологичность или устанавливается стабилизация параметров на одном уровне. При уменьшении содержания компонентов в составах ниже указанных пределов наблюдается снижение физико-химических свойств.
За счет увеличения диапазона регулирования скорости реакции, динамической вязкости, полного предотвращения выпадения кольматирующих гелеобразных осадков, ингибирования процесса эмульсиеобразования и полного выноса продуктов реакций из пласта в процессе освоения полностью решена поставленная задача - созданы универсальные, многоцелевые кислотные составы с улучшенными технологическими свойствами. Они могут применяться во всех известных технологических операциях по кислотной стимуляции продуктивности скважин и пластов. Это обусловливает высокую технико-экономическую эффективность применения предлагаемых составов для увеличения производительности нефтедобывающих скважин, эксплуатирующихся в самых разнообразных геолого-физических условиях месторождений и залежей, как в карбонатных, так и терригенных пластах-коллекторах.
Таким образом, предлагаемое техническое решение при широком внедрении в нефтегазодобывающую отрасль промышленности принесет существенную прибыль за счет качественного выполнения своих непосредственных функций по увеличению объемов добычи углеводородов, комплексирования операций во времени, экономии материальных и трудовых ресурсов.
название | год | авторы | номер документа |
---|---|---|---|
Способ интенсификации добычи нефти доманиковых отложений | 2023 |
|
RU2806639C1 |
Кислотный состав для обработки прискважинной зоны карбонатного пласта | 2024 |
|
RU2824107C1 |
СОСТАВ ДЛЯ КИСЛОТНОЙ ОБРАБОТКИ ПРИСКВАЖИННОЙ ЗОНЫ ПЛАСТА (ВАРИАНТЫ) | 2018 |
|
RU2679029C1 |
Кислотный состав для обработки призабойной зоны пласта | 2017 |
|
RU2656293C1 |
МНОГОФУНКЦИОНАЛЬНЫЙ КИСЛОТНЫЙ СОСТАВ ДЛЯ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА И СПОСОБ КИСЛОТНОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА | 2014 |
|
RU2572401C2 |
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА | 2013 |
|
RU2513586C1 |
СПОСОБ РАЗРУШЕНИЯ УСТОЙЧИВОЙ ОБРАТНОЙ ВОДОНЕФТЯНОЙ ЭМУЛЬСИИ, ОБРАЗУЮЩЕЙСЯ ПОСЛЕ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА | 2019 |
|
RU2719576C1 |
Кислотный поверхностно-активный состав для обработки призабойной зоны нефтяных и газовых скважин | 2015 |
|
RU2643050C2 |
СОСТАВ ДЛЯ КИСЛОТНОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА | 1991 |
|
RU2013530C1 |
Состав для воздействия на доманиковые отложения | 2019 |
|
RU2733340C1 |
Предложение относится к области нефтедобычи, в частности к составам для кислотной обработки пластов, и может быть использовано для химического растворения пород и кольматирующих отложений в призабойной зоне нефтяного, газового и газоконденсатного пласта, а также может быть использовано в качестве технологической жидкости при перфорации и гидроразрыве пластов. Технический результат заключается в улучшенных технологических свойствах за счет увеличения диапазона регулирования скорости реакции растворения карбонатной породы, динамической вязкости, полного предотвращения выпадения кольматирующих гелеобразных осадков, ингибирования процесса эмульсиеобразования и полного выноса продуктов реакций из пласта в процессе освоения. Состав для кислотной обработки призабойной зоны пласта содержит: по первому варианту, об.%: технические лигносульфонаты 20-35, изопропиловый спирт или кубовые остатки бутиловых спиртов 3-5, уксусная кислота 80%-ной концентрации 3-5, деэмульгатор водорастворимый 2-4, водный раствор соляной кислоты 20-28%-ной концентрации остальное; по второму варианту, об.%: технические лигносульфонаты 0,5-1, изопропиловый спирт или кубовые остатки бутиловых спиртов 3-5, неонол АФ9-12, или МЛ-81, или МЛ-81 Б, или ФЛЭК-ДГ-002 0,5-2, уксусная кислота 80%-ной концентрации 3-5, деэмульгатор водорастворимый 2-4, водный раствор соляной кислоты 20-28%-ной концентрации остальное; по третьему варианту, об.%: технические лигносульфонаты 0,5-1, изопропиловый спирт или кубовые остатки бутиловых спиртов 3-5, уксусная кислота 80%-ной концентрации 3-5, деэмульгатор водорастворимый 2-4, водный раствор фтористоводородной кислоты 70%-ной концентрации 6-10, водный раствор соляной кислоты 20-28%-ной концентрации остальное; по четвертому варианту, об.%: технические лигносульфонаты 0,5-1, изопропиловый спирт или кубовые остатки бутиловых спиртов 3-5, уксусная кислота 80%-ной концентрации 3-5, деэмульгатор водорастворимый 2-4, водный раствор полиакриламида 3-5%-ной концентрации или водный раствор модифицированного крахмала 3-5%-ной концентрации 3-10, водный раствор соляной кислоты 20-28%-ной концентрации остальное. 4 н.п. ф-лы, 2 табл.
СОСТАВ ДЛЯ КИСЛОТНОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА | 1991 |
|
RU2013530C1 |
СОСТАВ ДЛЯ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА | 1997 |
|
RU2123588C1 |
СОСТАВ ДЛЯ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ НЕФТЯНЫХ СКВАЖИН, ВСКРЫВАЮЩИХ ПЛАСТЫ, СОСТАВЛЕННЫЕ СИЛИКАТНЫМИ ПОРОДАМИ С НИЗКИМ СОДЕРЖАНИЕМ КАРБОНАТОВ | 1991 |
|
RU2013528C1 |
СОСТАВ ДЛЯ КИСЛОТНОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА | 1996 |
|
RU2100587C1 |
СОСТАВ ДЛЯ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА | 2002 |
|
RU2213216C1 |
Состав для обработки призабойной зоны нефтяной скважины | 1989 |
|
SU1682543A1 |
Состав для обработки призабойной зоны пласта | 1990 |
|
SU1789678A1 |
US 4322306 А, 30.03.1982. |
Авторы
Даты
2007-10-20—Публикация
2006-02-10—Подача