Изобретение относится к радиотехнике и может использоваться в системах радиосвязи для передачи информации.
Вибраторные антенны широко используются для излучения и приема радиосигналов. См., например, патент США №4083050, H04Q 11/02. Dual Band Monopole Antenna /R.D.Hall, книгу Овсяникова В.В. Вибраторные антенны с реактивными нагрузками. М.: Радио и связь, 1985. 120 с., а.с. СССР №1020895, 1401536, 1467585, H01Q 11/02.
Прямолинейные проводники, используемые в качестве вибраторных антенн, конструктивно просты и широко используются. Эти антенны часто располагаются вблизи земной поверхности и используются в качестве антенн бегущей волны. Однако, как показывают исследования (см., например, книгу Уолтер К. Антенны бегущей волны. М.: Мир, 1970), КПД такой антенны очень мал вследствие больших потерь в земле и нагрузочном резисторе.
Согласно Уолтеру К. бегущие волны подразделяются на: а) вытекающие и б) поверхностные. Вытекающая волна - это такая бегущая волна, энергия которой вдоль структуры без потерь непрерывно уменьшается за счет излучения, а вдоль структуры с потерями непрерывно уменьшается и за счет потерь в структуре и за счет излучения. Поверхностная волна - это такая волна, которая распространяется вдоль структуры без излучения. Учитывая необходимость использования резистора нагрузки для получения вытекающей волны и большие потери в подстилающей поверхности, особенно на низких частотах, доля излученной энергии у вибраторной антенны небольшая. Максимум диаграммы направленности в азимутальной плоскости при этом совпадает с осью вибратора.
Поэтому основными недостатками рассмотренных вибраторных антенн являются низкий КПД и неравномерность диаграммы направленности, большая часть энергии излучается (принимается) в направлении оси вибратора.
Наиболее близким по технической сущности к предлагаемому устройству является антенна бегущей волны по а.с. СССР №1467585, H04Q 11/02, принятая за прототип.
На фиг.1 представлена схема антенны-прототипа, где обозначено:
1 - излучающий проводник; 4 - питающий фидер; 7, 8 - проводники противовеса; 9 - нагрузочный резистор.
Антенна-прототип содержит излучающий проводник 1, проводники 7 и 8 противовеса и питающий фидер 4 и нагрузочный резистор 9.
Устройство-прототип работает следующим образом.
Часть электромагнитной энергии, подведенной к антенне бегущей волны, распространяется вдоль излучающего проводника 1, а другая часть - вдоль проводника 7 противовеса, длина которого равна λ/4, где λ - рабочая длина волны, и, отразившись от его конца, складывается в фазе с волной, распространяющейся вдоль излучающего проводника 1. Это приводит к увеличению мощности излучения в главном направлении. Увеличение высоты подвеса проводников 7 и 8 противовесов ведет к увеличению коэффициента усиления и КПД антенны. Это объясняется тем, что с ростом высоты подвеса растет сопротивление излучения проводников 7 и 8 противовесов, а следовательно, и мощность электромагнитной волны на них. Однако вертикальное расположение проводников 7 и 8 противовесов нежелательно, так как возрастает излучение паразитной (вертикальной) поляризации.
Недостатками устройства-прототипа являются наличие нагрузочного резистора 9, в котором теряется большая часть электромагнитной энергии, возникновение паразитной (вертикальной) поляризации при использовании наклонного положения проводников противовесов, обеспечивающих прибавку коэффициента усиления антенны на 5 дБ, относительно узкая диаграмма направленности (вдоль направления проводника 1). Следует добавить трудности согласования питающего фидера 4 с сопротивлением проводника 1, обеспечивается согласование за счет увеличения сопротивления нагрузочного резистора 9, приводящее к дополнительным потерям электромагнитной энергии.
Для устранения указанных недостатков в антенну, содержащую первый проводник и питающий фидер с точкой подключения к первому проводнику согласно изобретению, введены второй и третий проводники, первые концы всех проводников соединены между собой в общей точке под углом 120±10°, а вторые концы являются свободными, при этом длина первого проводника на 10-15% больше четверти рабочей длины волны, длина второго проводника на 10-15% меньше четверти рабочей длины волны, в середину которого подключена емкостная нагрузка, длина третьего проводника на 5-10% меньше четверти рабочей длины волны, в середину которого подключена индуктивная нагрузка.
На фиг.2 представлен чертеж предлагаемой антенны - вид в плане; на фиг.3 - вид в вертикальной плоскости, где h - высота поднятия антенны над землей. На фигурах обозначено: 1, 2, 3 - первый, второй и третий прямолинейные излучающие проводники; 4 - питающий фидер; 5 - индуктивная нагрузка; 6 - емкостная нагрузка.
Предлагаемая трехвибраторная антенна содержит три прямолинейных излучающих проводника 1, 2, 3, причем проводник 1 имеет длину более четверти рабочей длины волны на 10-15%, проводник 2 - на 10-15% менее четверти рабочей длины волны, проводник 3 - на 5-10% менее четверти рабочей длины волны, емкостную нагрузку 6, подключенную к середине проводника 2, индуктивную нагрузку 5, подключенную к середине проводника 3, и питающий фидер 4, соединенный с источником или приемником электромагнитных волн. Три проводника 1, 2, 3 расположены в одной плоскости и разнесены по азимуту на угол, близкий к 120°, первые концы проводников соединены между собой, а вторые концы являются свободными. К середине проводника 2 подключена емкостная нагрузка 4, а к середине проводника 3 подключена индуктивная нагрузка 5. Питание осуществляется через фидер 6, имеющий гальваническую связь с проводником 1.
Устройство работает следующим образом.
Часть электромагнитной энергии, подведенной через фидер 4, распространяется в виде бегущей волны вдоль проводника 1 в обе стороны. Достигнув начала проводника 1, электромагнитная волна отражается и направляется к концу проводника 1, складываясь с волной, бегущей в эту же сторону. Достигнув точки соединения трех проводников, электромагнитная волна разделяется на два проводника: большая часть уходит в проводник 3, где, достигая индуктивной нагрузки 5, быстро уменьшается до нуля. В проводнике 2 наблюдается отражение электромагнитной волны от конца проводника, поэтому максимум амплитуды электромагнитной волны наблюдается в середине проводника, где находится емкостная нагрузка 4. При этом в проводнике 3 наблюдается отставание по фазе электромагнитной волны относительно проводника 1, а в проводнике 2 - опережение по фазе электромагнитной волны относительно проводника 1.
Учитывая пространственное разнесение проводников 1, 2 и 3, результирующее излучение имеет круговую диаграмму направленности в горизонтальной плоскости (фиг.4), а в вертикальной плоскости (фиг.5), максимум излучения осуществляется под углом 45°. Наличие круговой диаграммы направленности удобно при приеме, когда заранее неизвестно направление прихода сигнала.
Входное сопротивление Za в точке подсоединения фидера 6 (фиг.2, 3) определяется по формуле:
где Ra - сопротивление излучения; Хa - реактивное сопротивление.
Для трехвибраторной антенны, состоящей из проводников диаметром 5·10-5λ, (λ - длина волны), имеющих следующие длины: 1 - 0,2864λ, 2 и 3 - 0,246λ, получены следующие параметры формулы (1):
Za=69,9+j1,21, Ом.
Для фидера, имеющего волновое сопротивление 75 Ом, КСВН будет 1,07, т.е. обеспечивается хорошее согласование и режим бегущей волны в антенне.
Следовательно, обеспечиваются достаточно хорошие условия, как для приема сигнала, так и для его излучения.
Входное сопротивление трехвибраторной антенны можно регулировать, изменяя точку подключения фидера или изменяя длину проводника антенны (телескопическая антенна). При этом можно изменять характер реактивного сопротивления от емкостного к индуктивному.
название | год | авторы | номер документа |
---|---|---|---|
ПЛОСКАЯ РЕЗОНАНСНАЯ АНТЕННА | 1996 |
|
RU2099828C1 |
Антенна бегущей волны | 1987 |
|
SU1467585A1 |
ШИРОКОПОЛОСНАЯ СИММЕТРИЧНАЯ ВИБРАТОРНАЯ АНТЕННА | 2001 |
|
RU2199805C2 |
АНТЕННА | 2006 |
|
RU2336613C2 |
Шлейф-вибраторная антенна низких частот | 2021 |
|
RU2779124C1 |
Широкополосная антенна | 2017 |
|
RU2656034C1 |
НЕСИММЕТРИЧНАЯ ВИБРАТОРНАЯ АНТЕННА | 2006 |
|
RU2313163C1 |
ВИБРАТОРНАЯ АНТЕННА | 2014 |
|
RU2571156C2 |
ДИСКОКОНУСНАЯ АНТЕННА (ВАРИАНТЫ) | 1998 |
|
RU2148287C1 |
СИНФАЗНАЯ АНТЕННАЯ РЕШЕТКА С КРУГОВОЙ ПОЛЯРИЗАЦИЕЙ | 2012 |
|
RU2517394C2 |
Изобретение относится к радиотехнике и может использоваться в системах радиосвязи и передачи информации в качестве антенны. Техническим результатом является повышение коэффициента усиления и обеспечение круговой диаграммы направленности, а также улучшение согласования с фидером и уменьшение габаритов. Сущность изобретения состоит в том, что кроме первого проводника введены второй и третий проводники, первые концы которых соединены между собой в общей точке под углом 120±10°, а вторые концы являются свободными, при этом длина первого проводника на 10-15% больше четверти рабочей длины волны, длина второго проводника на 10-15% меньше четверти рабочей длины волны, в середину которого подключена индуктивная нагрузка, длина третьего проводника на 5-10% меньше четверти рабочей длины волны, в середину которого подключена емкостная нагрузка. 5 ил.
Трехвибраторная антенна, содержащая первый проводник и питающий фидер с точкой подключения к первому проводнику, отличающаяся тем, что введены второй и третий проводники, первые концы всех проводников соединены между собой в общей точке под углом 120±10°, а вторые концы являются свободными, при этом длина первого проводника на 10-15% больше четверти рабочей длины волны, длина второго проводника на 10-15% меньше четверти рабочей длины волны, в середину которого подключена емкостная нагрузка, длина третьего проводника на 5-10% меньше четверти рабочей длины волны, в середину которого подключена индуктивная нагрузка.
Антенна бегущей волны | 1987 |
|
SU1467585A1 |
СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЗИРОВАННОГО ТЕМНОГО ПИВА | 2010 |
|
RU2423420C1 |
АЭРОДРОМНЫЙ ТОПЛИВОЗАПРАВЩИК | 1974 |
|
SU524360A1 |
АНТЕННА БЕГУЩЕЙ ВОЛНЫ | 1991 |
|
RU2010405C1 |
Авторы
Даты
2008-02-10—Публикация
2006-10-23—Подача