СПОСОБ УКРЕПЛЕНИЯ ОСНОВАНИЙ ПОДТОПЛЕННЫХ ЗДАНИЙ И СООРУЖЕНИЙ (ВАРИАНТЫ) Российский патент 2008 года по МПК E02D3/12 

Описание патента на изобретение RU2319807C1

Изобретение относится к области строительства, в частности к способам формирования оснований зданий и сооружений, и может быть использовано для укрепления оснований аварийных сооружений и санации ветхого жилья.

Известно использование горизонтальных скважин в способе выравнивания зданий и сооружений, включающем бурение в грунте основания под подошвой фундамента горизонтальных скважин в один или несколько параллельных рядов, образование в устье скважин грунтовых перемычек, поочередное замачивание рядов скважин дозированной заливкой водой с температурой не менее 60°С. Для эффективности выравнивания зданий с продольными кренами скважины бурят в поперечном направлении здания с постоянным диаметром по их длине в рядах, с размещением при этом устья и забоя скважин за контуром крайних рядов фундаментов на расстоянии, равном 0,5 ширины подошвы [А.с. 1818419, БИ №2, 30.05.93].

Способ имеет направленность на специфические грунты и неприемлем для укрепления оснований подтопленных зданий.

Известен также способ укрепления грунтовых оснований на аварийных объектах, включающий бурение вертикальных и наклонных скважин из подвальных помещений и вдоль фундаментов с наружной стороны сооружения, инъектирование через скважины в грунт естественного основания закрепляющих составов [Фатеев Н.Т. Строительство тоннелей в слабых обводненных грунтах специальными способами. Горный журнал, №6, 1998. С.66-69].

Недостатком способа является дополнительная непредсказуемая деформация уже ослабленных грунтов в основании подтопленных зданий, необходимость инъектирования несущих грунтов на всю мощность активной зоны, невозможность выполнения работ по соображениям безопасности.

Известен способ закрепления грунтов в основании деформированных зданий и сооружений, согласно которому вначале по величинам начальных взаимных перемещений судят о положении изогнутой оси строения, выявляют участки здания, сооружения, в пределах которых имеются однозначно изгибаемые участки. Затем осуществляют закрепление грунтов сначала на тех захватках однозначно изгибаемых участков, где зафиксированы наименьшие начальные осадки. Затем по результатам измерения деформаций, образовавшихся после первого этапа закрепления, вновь выявляют однозначно изгибаемые участки здания, сооружения, и производят закрепление на последующих захватках тех участков строения, где образовались наименьшие осадки. В результате обеспечивается возможность закрепления грунтов оснований зданий и сооружений без ухудшения деформационного состояния по сравнению с состоянием до осуществления закрепления, а также упрощение работ и сокращение объема закрепления [RU №2162917, 10.02.2001].

Недостатком способа является его сложность и неприменимость для укрепления основания подтопленного здания.

В техническом уровне не выбран ближайший аналог (прототип) заявленному способу.

Задачей изобретения является создание способов укрепления оснований подтопленных зданий и сооружений, обеспечивающих стабилизацию деформационного состояния грунта основания.

Техническими результатами, которые могут быть получены при использовании вариантов способов, являются:

- стабилизация деформационного состояния;

- безопасность ведения работ;

- безаварийная эксплуатация сооружения.

Решение указанной задачи и достижение вышеперечисленных результатов стало возможно:

- для способа по первому варианту благодаря тому, что в способе укрепления оснований подтопленных зданий и сооружений, характеризующемся сооружением под основанием фундамента лучевых скважин под защитой инвентарной «глухой» колонны труб из одного или более колодцев установкой горизонтального бурения, заложенных за внешней границей опасной зоны ведения работ, при этом длина горизонтальных скважин обеспечивает их выход за внешнюю границу фундаментов, колодец сооружают таким образом, что его забой на 1,0-1,5 м расположен ниже подошвы фундамента, а из каждой горизонтальной скважины при поинтервальном извлечении инвентарной «глухой» колонны труб осуществляют виброинъектирование грунтов закрепляющим составом, закладывают в каждую горизонтальную скважину арматуру и осуществляют бетонирование армированной полости этих скважин, для способа укрепления оснований зданий и сооружений (по второму варианту), стоящих на сваях, характеризующийся сооружением под подошвой ростверка горизонтальных скважин между рядами свай под защитой инвентарной «глухой» колонны труб из траншеи, пройденной за пределами опасной зоны ведения работ параллельно зданию или сооружению с превышением его длины, при этом длина горизонтальных скважин обеспечивает их выход за внешние границы ростверка, траншею заглубляют на 1,0-1,5 м ниже положения подошвы ростверка, а из каждой горизонтальной скважины при поинтервальном извлечении инвентарной «глухой» колонны труб осуществляют виброинъектирование грунтов закрепляющим составом, закладывают в каждую горизонтальную лучевую скважину арматуру и производят бетонирование армированной полости этих скважин.

Заявленные варианты способов укрепления оснований подтопленных зданий и сооружений иллюстрируют следующие фигуры:

фиг.1 - план расположения горизонтальных лучевых скважин под основанием подтопленного здания (вариант первый);

фиг.2 - план расположения горизонтальных скважин между сваями под подошвой ростверка (вариант второй).

Способ укрепления подтопленных зданий и сооружений по первому варианту (см. фиг.1) осуществляют следующим образом. Определяют известным способом границу 1 опасной зоны (см. СНиП II* -11-77*, М., 1987, ЦИТП, с.9) и сооружают за ней, например, два колодца 2, которые заглубляют на 1,0-1,5 м ниже основания подтопленного. В колодец 2 опускают установку горизонтального бурения (на фиг. не показана) и под защитой инвентарной «глухой» колонны труб (на фиг. не показан) сооружают под основанием несколько горизонтальных лучевых скважин 4, расходящихся веером, при этом длина этих горизонтальных лучевых скважин обеспечивает их выход за внешнюю границу фундаментов. Извлекают поинтервально инвентарную «глухую» колонну труб (на фиг. не показана) и при этом виброинъектируют грунты закрепляющим раствором. После закрепления каждой горизонтальной лучевой скважины 4 закладывают в них арматуру (на фиг. не показана) и осуществляют бетонирование армированной полости этих скважин.

Проходка горизонтальных лучевых скважин 4 под защитой инвентарной «глухой» колонны труб исключает возникновение суффозионных явлений в несущих грунтах, поступление излишних объемов разжиженных грунтов и воды в колодец 2. Закрепляющий состав подбирают в зависимости от гидрохимической характеристике грунтовых вод, состава и физико-механических свойств закрепляемых грунтов и агрессивности среды.

После истечения срока отверждения закрепляющего состава и бетона под основанием подтопленного здания формируется система жестких лучевых балок, обеспечивающих заданные прочностные параметры основания сооружения и передачу нагрузки на площадь 5 большую по сравнению с основанием 3.

Применительно к зданиям и сооружениям, стоящим на свайном фундаменте (вариант второй), способ укрепления оснований подтопленных зданий и сооружений осуществляют следующим образом (см. фиг.2).

Выявляют известным способом внешнюю границу опасной зоны ведения работ согласно СНиП II-11-77* и сооружают за ней траншею 5. При этом траншею 5 закладывают вдоль подтопленного здания параллельно зданию или сооружению, ее глубину назначают на 1,0-1,5 м ниже положения подошвы ростверка (на фиг.2 не показаны), а длину траншеи 5 выполняют большей, чем длина ростверка (на фиг.2 не показан). Спускают в траншею 5 установку горизонтального бурения (на фиг. не показано) и в промежутке между сваями (на фиг. не показаны) параллельно им бурят под подошвой ростверка горизонтальные скважины 6 под защитой инвентарной «глухой» колонны труб (на фиг. не показана). Поинтервально извлекают инвентарную «глухую» колонну, проводят виброинъектирование закрепляющим составом грунт через каждую горизонтальную скважину, закладывают в каждую горизонтальную скважину арматуру и производят бетонирование армированной полости каждой горизонтальной скважины (на фиг. не показан).

Длина горизонтальных скважин определяется с таким расчетом, чтобы нагрузка, передаваемая аварийным сооружением и дополнительным весом сети скважин, соответствовала прочностным характеристикам несущих грунтов, которые оказались сниженными в результате подтопления площадки.

Практическая применимость заявляемого способа показана на примерах конкретного исполнения.

Пример 1.

Объект - аварийный 5-этажный жилой дом массовой серии застройки начала 60-х годов прошлого столетия. Здание бесподвальное.

В стенах здания появились трещины

Глубина заложения ленточных фундаментов1,5Грунты - суглинки естественной влажноститвердые с коэффициентом пористости0,5Расчетное сопротивление грунтов основанияпри проектировании, кг/см23Сопротивление грунтов основания переувлажненных(перешедших в пластическое состояние),кг/см22,5Расстояние заложения колодца от стен здания, м8Глубина колодца, м3

Определяют внешние границы опасной зоны ведения работ.

Сооружают два колодца за внешней границей этой зоны. Колодцы расположены с двух сторон аварийного здания по его диагонали. Опускают установку горизонтального бурения УЛБ-130 м и разбуривают под основанием систему горизонтальных лучевых скважин под защитой инвентарной «глухой» колонны труб. Виброинъектируют грунт (суглинки) в стенки каждой горизонтальной скважины цементный раствор с добавлением замедлителя схватывания, что увеличивает радиус закрепления и обеспечивает достаточный интервал времени для армирования горизонтальных лучевых скважин. Армируют указанные скважины, после чего нагнетают в каждую из них цементный раствор для их бетонирования.

Для укрепления основания общий метраж горизонтальных лучевых скважин составляет 492 м, суммарный метраж заинъектированных горизонтальных лучевых скважин - 426 м, радиус закрепления ˜0,5 м. Площадь, воспринимающая нагрузку, возросла в 1,4 раза, а нагрузка на несущие грунты снизилась до 2,4 кг/см2.

В течение года с момента отвердения цементного раствора развитие деформаций не наблюдается.

Пример 2.

Объект - аварийный 5-этажный 80-квартирный жилой дом типовой серии начала 60-х годов прошлого века. Здание бесподвальное. Основание - ряды висячих свай под наружными и внутренними стенами. На фиг.2 количество свай и рядов показано условно. Несущие грунты неоднородны в плане и разрезе, представлены лессовидными суглинками, подстилаемыми мелкозернистыми пылеватыми песками, на период застройки находились в состоянии естественной влажности, средней плотности. Глубина погружения свай - 7 м. Расчетное сопротивление суглинков - 2,5 кг/см2, песков в плоскости нижних концов свай - около 14 кг/см2.

В результате подтопления зоны застройки прочностные характеристики несущих грунтов снизились: суглинков - до 1,8 кг/см2, песков - до 10,6 кг/см2.

В стенах здания появились трещины, во времени деформации продолжали развиваться.

Для укрепления основания дома и разгрузки свайного основания за внешней границей безопасного ведения работ на расстоянии от дома L=8 м параллельно длинной стене здания пройдена траншея длиной 84 м, шириной (по дну) 3,6 м и глубиной 2,3 м, в восточном торце которой открыт водосборник глубиной 3,3 м.

Из траншеи установкой лучевого бурения УЛБ-130 м между рядами свай (см. фиг.2) на отметке - 1,5 м, то есть на 0,5 м ниже подошвы ростверка, под защитой «глухой» инвентарной колонны труб пройдена система горизонтальных и параллельных скважин, выходящих за границы ростверка на 8 м (схема 2), суммарная протяженность которых составила 196 м. Через скважины проведено виброинъектирование суглинков цементным раствором, в скважинах после инъектирования размещалась стальная арматура и проводилось бетонирование полостей скважин.

В результате выполненных работ непосредственно под ростверком образована система жестких балок, имеющих диаметр ˜1 м, которая восприняла часть нагрузки от аварийного дома (˜25-30%) и привела к разгрузке свайного основания. Наблюдения за установленными маяками на трещинах в стенах показали, что деформационные процессы прекратились, что позволило приступить к санации дома.

Как видно из вышеприведенных примеров, заявляемый способ укрепления оснований подтопленных зданий и сооружений (варианты) решает поставленную задачу и позволяет стабилизировать деформационное состояние подтопленных грунтов аварийных объектов при обеспечении безопасности работы и дальнейшей безаварийной их эксплуатации.

Похожие патенты RU2319807C1

название год авторы номер документа
СПОСОБ СТРОИТЕЛЬСТВА ПРОТИВОФИЛЬТРАЦИОННОЙ ЗАВЕСЫ НА ЗАСТРОЕННЫХ ТЕРРИТОРИЯХ 2007
  • Пономаренко Юрий Викторович
  • Изотов Анатолий Александрович
  • Клименко Наталья Андреевна
  • Кузькин Валерий Сергеевич
RU2349710C1
СПОСОБ ЗАЩИТЫ ВОДНЫХ РЕСУРСОВ С ПОМОЩЬЮ ГОРИЗОНТАЛЬНЫХ (МЕЖПЛАСТОВЫХ) ПРОТИВОФИЛЬТРАЦИОННЫХ ЗАВЕС И ТЕХНОЛОГИЯ ИХ СООРУЖЕНИЯ 2007
  • Пономаренко Юрий Викторович
  • Изотов Анатолий Александрович
  • Кузькин Валерий Сергеевич
  • Клименко Наталья Андреевна
RU2347034C1
СПОСОБ ГОРИЗОНТАЛЬНОГО ДРЕНАЖА ПОДТОПЛЕННЫХ СООРУЖЕНИЙ НА СВАЙНЫХ ОСНОВАНИЯХ 2012
  • Воронин Алексей Алексеевич
  • Пономаренко Юрий Викторович
RU2539447C2
СПОСОБ СКВАЖИННОЙ ГИДРОДОБЫЧИ ИЗ ГОРНЫХ ВЫРАБОТОК С ПРЕДВАРИТЕЛЬНЫМ ОСУШЕНИЕМ ПОЛЕЗНОГО ИСКОПАЕМОГО 2011
  • Пономаренко Юрий Викторович
  • Кузькин Валерий Сергеевич
  • Мачехина Ирина Юрьевна
RU2499140C2
СПОСОБ ТЕХНОГЕННОГО ЭПИГЕНЕЗА ТАМПОНИРОВАНИЯ ВОДОПРОНИЦАЕМЫХ УЧАСТКОВ ИЛИ ЗОН В СОЛЯНЫХ ГОРНЫХ ПОРОДАХ 2007
  • Клименко Наталья Андреевна
  • Пономаренко Юрий Викторович
  • Изотов Анатолий Александрович
  • Кузькин Валерий Сергеевич
RU2363848C1
БУРОВОЙ СПОСОБ ВОЗВЕДЕНИЯ ЛЕНТОЧНЫХ ФУНДАМЕНТОВ В ОБВОДНЕННЫХ ГРУНТАХ 2010
  • Пономаренко Юрий Викторович
  • Мельникова Людмила Петровна
  • Московченко Галина Юрьевна
RU2415228C1
СПОСОБ ЗАЩИТЫ ГОРНЫХ РАБОТ ОТ ОБВОДНЕНИЯ, ВОДНЫХ РЕСУРСОВ ОТ ЗАГРЯЗНЕНИЯ НЕФТЕПРОДУКТАМИ В ТРЕЩИНОВАТЫХ ВОДОНОСНЫХ ПЛАСТАХ 2006
  • Пономаренко Юрий Викторович
  • Изотов Анатолий Александрович
  • Клименко Наталья Андреевна
RU2333320C1
СПОСОБ И УСТРОЙСТВО ДЛЯ СООРУЖЕНИЯ ГОРИЗОНТАЛЬНОЙ ДРЕНАЖНОЙ СКВАЖИНЫ В ОБВОДНЕННЫХ ПЕСКАХ 2008
  • Кузькин Валерий Сергеевич
  • Пономаренко Юрий Викторович
  • Тимошков Иван Андреевич
  • Изотов Анатолий Александрович
  • Приходько Анатолий Михайлович
  • Кузькин Тимофей Валерьевич
  • Кузькин Сергей Валерьевич
  • Деревенских Нина Яковлевна
RU2382866C2
СПОСОБ ПРЕДОТВРАЩЕНИЯ ПРОДВИЖЕНИЯ ФРОНТА ЖИДКИХ ЗАГРЯЗНЕНИЙ В МАССИВЕ ГОРНЫХ ПОРОД 2007
  • Изотов Анатолий Александрович
  • Пономаренко Юрий Викторович
  • Кузькин Валерий Сергеевич
RU2365703C1
СПОСОБ СООРУЖЕНИЯ ГОРИЗОНТАЛЬНОЙ ЛУЧЕВОЙ ДРЕНАЖНОЙ СКВАЖИНЫ В ТВЕРДЫХ ПОРОДАХ 2007
  • Климентов Михаил Николаевич
  • Пономаренко Юрий Викторович
  • Дрямов Владимир Сергеевич
  • Сергеев Сергей Валентинович
  • Петин Александр Николаевич
  • Кузькин Валерий Сергеевич
  • Клименко Наталья Андреевна
  • Гасанов Фазули Мамедович
RU2337244C1

Иллюстрации к изобретению RU 2 319 807 C1

Реферат патента 2008 года СПОСОБ УКРЕПЛЕНИЯ ОСНОВАНИЙ ПОДТОПЛЕННЫХ ЗДАНИЙ И СООРУЖЕНИЙ (ВАРИАНТЫ)

Изобретение относится к области строительства, в частности к способам формирования оснований зданий и сооружений, и может быть использовано для укрепления оснований аварийных сооружений и санации ветхого жилья. Технический результат - стабилизация деформационного состояния грунта основания. В способе укрепления оснований подтопленных зданий и сооружений по первому варианту из колодца или колодцев, заложенных за внешней границей опасной зоны ведения работ, заглубленных на 1,0-1,5 метра ниже подошвы фундамента, сооружают под горизонтальные лучевые скважины под защитной инвентарной «глухой» колонны, закрепляют в них грунты виброинъектированием при поинтервальном извлечении этой колонны, закладывают в каждую горизонтальную арматуру и осуществляют бетонирование армированной полости этих скважин. Аналогично по второму варианту, только горизонтальные скважины сооружают из траншеи, заглубленной на 1,0-1,5 метра ниже ростверка, горизонтальные скважины сооружают между рядами свай с выходом за внешнюю границу ростверка. 2 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 319 807 C1

1. Способ укрепления оснований подтопленных зданий и сооружений, характеризующийся сооружением под основанием фундамента горизонтальных лучевых скважин под защитой инвентарной «глухой» колонны труб из одного или более колодцев установкой горизонтального бурения, заложенных за внешней границей опасной зоны ведения работ, при этом длина горизонтальных лучевых скважин обеспечивает их выход за внешнюю границу фундаментов, колодец сооружают таким образом, что его забой на 1,0-1,5 м расположен ниже подошвы фундамента, из каждой горизонтальной лучевой скважины при поинтервальном извлечении инвентарной «глухой» колонны труб осуществляют виброинъектирование грунтов закрепляющим составом, закладывают в каждую горизонтальную лучевую скважину арматуру и осуществляют бетонирование армированной полости этих скважин.2. Способ укрепления оснований подтопленных зданий и сооружений, стоящих на свайном фундаменте, характеризующийся сооружением под подошвой ростверка горизонтальных скважин между рядами свай под защитой инвентарной «глухой» колонны труб из траншеи, пройденной за внешней границей опасной зоны ведения работ параллельно зданию или сооружению с превышением его длины, при этом длина горизонтальных скважин обеспечивает их выход за внешние границы ростверка, траншею заглубляют на 1,0-1,5 м ниже положения подошвы ростверка, а из каждой горизонтальной скважины при поинтервальном извлечении инвентарной «глухой» колонны труб осуществляют виброинъектирование грунтов закрепляющим составом, закладывают в каждую горизонтальную скважину арматуру и производят бетонирование армированной полости этих скважин.

Документы, цитированные в отчете о поиске Патент 2008 года RU2319807C1

СПОСОБ УКРЕПЛЕНИЯ ВОДОНАСЫЩЕННЫХ ГРУНТОВ В ОСНОВАНИЯХ ЗДАНИЙ И СООРУЖЕНИЙ 2002
  • Лобов О.И.
  • Мельников Б.Н.
  • Иваненко В.И.
  • Шерстюк С.Л.
RU2204650C1
СПОСОБ ЗАКРЕПЛЕНИЯ ГРУНТА 1993
  • Придатко Ю.М.
  • Лебедев А.Б.
  • Метелева Л.В.
  • Шабров В.Л.
  • Романюк А.В.
RU2073774C1
Способ укрепления грунта 1989
  • Хасин Михаил Федорович
SU1733567A1
Способ укрепления грунта 1989
  • Галифанов Геннадий Галитович
  • Бердыклычев Нурклыч
SU1677179A1

RU 2 319 807 C1

Авторы

Пономаренко Юрий Викторович

Изотов Анатолий Александрович

Кузькин Валерий Сергеевич

Клименко Наталья Андреевна

Даты

2008-03-20Публикация

2006-08-14Подача