Изобретение относится к области преобразовательной техники и может быть использовано для питания различных потребителей постоянного тока.
Известен преобразователь трехфазного переменного напряжения в постоянное, содержащий трансформатор с двумя вторичными обмотками, соединенными по схеме «две обратные звезды», между нулевыми точками которых включен уравнительный реактор, а зажимы этих обмоток соединены с вентилями (см., например, И.Л.Каганов «Электронные и ионные преобразователи» ч.III, ГЭИ, М-Л., 1956). В таком преобразователе хотя и достигается параллельная работа двух фаз прямой и обратной звезды, однако уравнительный реактор не ограничивает нарастание тока внутреннего короткого замыкания, поскольку не входит в цепь протекания этого тока.
Известен преобразователь трехфазного переменного напряжения в постоянное (прототип), содержащий силовой трансформатор с двумя группами вторичных обмоток, соединенными в звезду каждая и шесть вентилей, соединенных в замкнутое кольцо (SU 265254, МПК Н02М, опубл. 09.03.1970 г.).
Недостатком этого преобразователя является высокое значение отношения действующего значения анодного тока вентиля к его среднему, т.е. плохой коэффициент формы, поскольку вентиль проводит в течение 1/6 части периода амплитуд тока нагрузки Id. Кроме того, при внутреннем коротком замыкании в нем развиваются значительные токи.
Технический результат заключается в обеспечении параллельной работы анодных цепей вентилей и ограничении тока внутреннего короткого замыкания.
Сущность заключается в том, что преобразователь трехфазного переменного напряжения в постоянное, содержащий силовой трансформатор с двумя группами вторичных обмоток, соединенными в звезду каждая и шесть вентилей, соединенных в замкнутое кольцо, причем каждая фаза одной вторичной обмотки через вентили связана с разноименными фазами второй вторичной обмотки, снабжен уравнительным реактором, выполненным в виде трех обмоток со средней точкой, расположенных на одном магнитопроводе. Средняя точка каждой обмотки реактора подключена к одной из фазных обмоток одной группы вторичных обмоток трансформатора, а сама указанная обмотка реактора соединена последовательно с одноименными электродами двух вентилей, через которые указанная фазная обмотка соединена с разноименными фазами второй вторичной обмотки. Обмотки реактора соединены между собой через вентили по схеме треугольника.
На фиг.1 представлена схема преобразователя, на фиг.2а-в - диаграммы вторичных фазных и линейных эдс е2, выпрямленного напряжения ed, напряжения на реакторе up, токов вентилей iв.
Преобразователь (фиг.1) состоит из трансформатора, содержащего две группы вторичных обмоток 1 и 2, соединенных по схеме звезда каждая (первичные обмотки на фиг.1 не показаны), шести вентилей 3-8, уравнительного реактора УР, выполненного в виде трех обмоток 9-11, расположенных на одном магнитопроводе 12. К нулевым точкам 0 и 0′ обмоток 1 и 2 подключена нагрузка 13. Обмотки 9-11 уравнительного реактора УР соединены между собою через вентили 3-8 по схеме треугольника, т.е. начало обмотки 9 - (зажим «е») через вентили 3 и 8 соединяется с концом обмотки 11 (зажимом «s»), а начало обмотки 11 (зажим «f») соединено через вентили 7 и 6 с концом обмотки 10 (зажим «r») и т.д. Каждая средняя точка 01, 02 и 03 соответственно обмоток 9, 10 и 11 подключена к одной из фаз группы обмоток 1 так, что любая фазная обмотка группы 1 через половины обмоток уравнительного реактора и вентили соединена с разноименными фазными обмотками группы 2 (например, зажим «а» фазной обмотки группы 1 через половины обмоток 01p и 01e и вентили 3 и 4 соединены с разноименными фазами b1 и с1 группы обмоток 2).
Формирование напряжения ed на нагрузке 13 осуществляется на основе известного принципа работы уравнительного реактора. Так, фаза «а» группы обмоток 1 вступает в работу в момент времени t=0 (фиг.2а) и заканчивает работу в момент времени . При этом ток нагрузки Id на соответствующих интервалах будет проходить: на интервале 0÷t1 фаза «а», половина обмотки 9 01e вентиль 3, зажим обмотки b1 группы 2, нагрузка 13. Вместе с вентилем 3 на интервале 0-t1 продолжает работу вентиль 8, фаза «с», половина обмотки реактора 03s, фаза b1. На интервале t1-t2 сохраняется та же цепь протекания тока через вентиль 3 и одновременно половина тока фазы «а» будет проходить по цепи: фазная обмотка «а», половина обмотки 01p, вентиль 4, фазная обмотка с1. В момент времени t2 вентиль 3 (фиг.2в) заканчивает работу. На интервале , фаза «а» работает совместно с фазой «в», образуя соответственно цепи протекания тока, включающие в себя половины обмоток 9 и 10 - 01p и 02q, вентили 4 и 5, обмотку группы 2-c1. Напряжение половины обмотки уравнительного реактора up (фиг.2) при параллельной работе фаз вторичной обмотки складывается эдс е2 фазной обмотки, имеющей меньшее мгновенное значение и вычитается из фазного эдс вторичной обмотки с большим мгновенным значением. Результирующее напряжение показано на фиг.2а штриховой линией. Так напряжение половины обмотки 01e на интервале 0-t1 складывается с эдс е2а обмотки фазы «а», а напряжение обмотки 03s на этом интервале вычитается из эдс е2 с фазы «с». На интервале t1-t1 знак напряжения на указанных половинах обмоток реактора изменяется на противоположный. На интервале t1-t11 напряжение половины обмотки 01e вычитается из эдс е2в1, а напряжение полуобмотки 01p добавляется ко вторичной эдс е1 2с, а на интервале t11-t2 - наоборот. Начиная с момента t2 вступает в работу вентиль 5 и полуобмотка q02 обмотки 10 уравнительного реактора, а полуобмотка e01 и вентиль 3 - заканчивают работу. На интервале t2-Т к вторичным фазным эдс е2а и е2в добавляется с соответствующим знаком напряжение up полуобмоток p01 и q02. Дальнейший порядок работы остальных фазных обмоток трансформатора и полуобмоток уравнительного реактора и вентилей можно проследить, пользуясь диаграммами фиг.2а-в. Ординаты, по которым построена кривая напряжения up фиг.2б, показаны на фиг.2а, а при линейных эдс евс 1, eва 1, eса 1. Следует отметить, что любая коммутация тока между вентилями является благоприятной поскольку происходит без изменения потокосцепления обмоток 9-11 уравнительного реактора УР.
Как видно из фиг.2в, длительность анодного тока вентиля в предложенном преобразователе равна 120 эл. град. при амплитуде тока через вентиль . Как известно, коэффициент формы такой кривой является более оптимальным, чем у известного преобразователя, в котором при том же среднем значении тока вентиля длительность протекания анодного тока равна 60 эл.град., а амплитуда - току нагрузки Id (фиг.2 в).
Из фиг.1 также видно, что при внутреннем коротком замыкании, например пробое вентиля 4, последовательно и согласно в цепь тока, короткого замыкания вентиля 5 включаются полуобмотки q02 и p01 уравнительного реактора УР. Этим достигается определенное ограничение тока внутреннего короткого замыкания.
Таким образом, предложенный преобразователь имеет лучший коэффициент формы анодного тока вентиля и имеет меньшие значения токов внутреннего короткого замыкания. Экспериментальная проверка подтвердила работоспособность устройства в соответствии с диаграммами фиг.2а-в.
Изобретение относится к области преобразовательной техники и может быть использовано для питания различных потребителей постоянного тока. Технический результат заключается в обеспечении параллельной работы анодных цепей вентилей и ограничении тока внутреннего короткого замыкания. Преобразователь содержит силовой трансформатор с двумя группами вторичных обмоток, соединенными в звезду каждая и шесть вентилей, соединенных в замкнутое кольцо. Каждая фаза одной вторичной обмотки через вентили связана с разноименными фазами второй вторичной обмотки. Преобразователь снабжен также уравнительным реактором, выполненным в виде трех обмоток со средней точкой, расположенных на одном магнитопроводе. Средняя точка каждой обмотки реактора подключена к одной из фазных обмоток одной группы вторичных обмоток трансформатора, а сама указанная обмотка реактора соединена последовательно с одноименными электродами двух вентилей, через которые указанная фазная обмотка соединена с разноименными фазами второй вторичной обмотки. Обмотки реактора соединены между собой через вентили по схеме треугольника. 1 з.п. ф-лы, 2 ил.
0 |
|
SU265254A1 | |
ПРЕОБРАЗОВАТЕЛЬ ТРЕХФАЗНОГО ПЕРЕМЕННОГО НАПРЯЖЕНИЯ В ПОСТОЯННОЕ | 2005 |
|
RU2292626C1 |
Преобразователь трехфазного переменного напряжения в постоянное | 1980 |
|
SU917282A1 |
Преобразователь переменного тока в постоянный | 1981 |
|
SU1067576A1 |
Устройство для дальновидения | 1936 |
|
SU52814A1 |
Авторы
Даты
2008-05-20—Публикация
2007-03-19—Подача