Область техники, к которой относится изобретение
Настоящее изобретение относится в целом к сотовой системе связи, использующей схему множественного доступа с ортогональным частотным разделением каналов (OFDMA) (сотовая система связи OFDMA), и в особенности к способу выделения подканалов в сотовой системе связи OFDMA.
Уровень техники
Система мобильной связи следующего поколения требует высокоскоростную, высококачественную передачу данных для того, чтобы поддерживать разнообразные мультимедийные услуги с улучшенным качеством. В последнее время большой объем исследовательской работы выполняется по поводу схемы OFDMA, которая является одной из традиционных схем, удовлетворяющих вышеупомянутому требованию.
Схемы Множественного Доступа, основанные на схеме мультиплексирования с ортогональным частотным разделением каналов (OFDM), в общем могут быть классифицированы на две схемы. Первая схема является схемой OFDMA, в которой множество подканалов в одном символе OFDM совместно используется множеством пользователей в системе связи с беспроводным широкополосным доступом (BWA). Системой связи, предложенной с помощью применения схемы OFDMA к системе связи со стационарным и мобильным беспроводным широкополосным доступом (FBWA), является система связи 802.16d/e Института инженеров по электротехнике и электронике (IEEE). В системе связи IEEE 802.16d/e используется 2048-точечное быстрое преобразование Фурье (FFT), и 1702 сигнала (тона) разделяются на 166 пилот-сигналов и 1536 сигналов данных. Здесь термин «сигнал» идентичен в принципе поднесущей, и в последующем описании следует отметить, что сигнал обладает смешанным понятием из понятия сигнала и понятия поднесущей. Кроме того, в системе связи IEEE 802.16d/e 1536 сигналов данных группируются в 32 подканала, каждый имеющий 48 сигналов данных, и 32 подканала однозначно выделяются соответствующим пользователям.
Второй схемой является схема OFDM со скачкообразной перестройкой частоты (FH-OFDM), которая является объединением схемы скачкообразной перестройки частоты (FH) и схемы OFDM. Как схема OFDMA, так и схема FH-OFDM направлены на получение выигрыша от частного разнесения посредством однозначного рассредоточения сигналов данных по всей полосе частот. Тем не менее, относящиеся к схеме OFDMA и схеме FH-OFDM технологии, раскрытые до сих пор, никогда не рассматривают отдельную частотно-избирательную адаптивную модуляцию, за исключением частотного разнесения. Также, стандарт IEEE 802.16e никогда не принимает во внимание частотно-избирательную адаптивную модуляцию.
Сущность изобретения
Следовательно, задачей настоящего изобретения является предоставление способа выделения подканалов с адаптивными модуляцией и кодированием (АМС) и подканалов разнесенного приема в сотовой системе связи OFDMA.
Другой задачей настоящего изобретения является предоставление способа адаптивного образования подканалов разнесенного приема и подканалов с АМС в переменном соотношении, основанном на символе OFDM, как для восходящей линии связи, так и нисходящей линии связи в сотовой системе связи OFDMA.
Еще одной задачей настоящего изобретения является предоставление способа выделения подканала, допускающего поддержку различных коэффициентов повторного использования частоты в сотовой системе связи OFDMA.
Еще одной задачей настоящего изобретения является предоставление способа выделения подканала для образования подканалов разнесенного приема нисходящей линии связи с использованием последовательности Рида-Соломона (RS) в сотовой системе связи OFDMA.
В соответствии с аспектом настоящего изобретения предложен способ выделения подканала в передатчике сотовой системы связи множественного доступа с ортогональным частотным разделением каналов (OFDMA), в которой вся полоса частот включает в себя множество полос, причем каждая из полос включает в себя множество элементов дискретизации, и каждый из элементов дискретизации включает в себя множество поднесущих. Способ заключается в том, что разделяют заданный временной интервал на временной интервал подканала с адаптивными модуляцией и кодированием (АМС) и временной интервал подканала разнесенного приема; выбирают любую из множества полос во временном интервале подканала с АМС; выбирают заданное количество элементов дискретизации из множества элементов дискретизации в выбранной полосе; и выделяют выбранные элементы дискретизации подканалу с АМС.
В соответствии с другим аспектом настоящего изобретения предложен способ выделения подканала в передатчике сотовой системы связи множественного доступа с ортогональным частотным разделением каналов (OFDMA), в которой вся полоса частот включает в себя множество полос, причем каждая из множества полос включает в себя множество элементов дискретизации, и каждый из множества элементов дискретизации включает в себя множество поднесущих. Способ заключается в том, что разделяют заданный временной интервал на временной интервал подканала с адаптивными модуляцией и кодированием (АМС) и временной интервал подканала разнесенного приема; выделяют подканал с АМС во временном интервале подканала с АМС; и выделяют подканал разнесенного приема во временном интервале подканала разнесенного приема.
В соответствии с другим аспектом настоящего изобретения предложен подканал для использования в абонентской станции базовой станцией в сотовой системе связи множественного доступа с ортогональным частотным разделением каналов (OFDMA), использующей кадр, который включает в себя множество элементов дискретизации, упорядоченных в матричной форме из рядов и столбцов, причем каждый из столбцов представляет собой временную область, каждый из рядов представляет собой частотную область, при этом каждый из рядов имеет множество последовательных поднесущих, столбцы представляют собой символы, и каждый из элементов дискретизации включает в себя заданные поднесущие. Подканал содержит m поднесущих, выбранных из заданных поднесущих и имеющих множество наборов элементов дискретизации, расположенных с интервалами друг от друга в том же ряду среди множества элементов дискретизации, упорядоченных в матричной форме, для передачи данных в каждую абонентскую станцию посредством каждой поднесущей, причем подканал выделяется из условия, чтобы подканал имел множество наборов элементов дискретизации, соседствующих друг с другом в том же ряду среди множества элементов дискретизации.
Краткое описание чертежей
Вышеуказанные и другие задачи, признаки и преимущества настоящего изобретения станут более очевидными из последующего подробного описания, рассматриваемого совместно с прилагаемыми чертежами, на которых:
фиг.1 - диаграмма, иллюстрирующая структуру кадра, применяемую в сотовой системе связи OFDMA согласно варианту осуществления настоящего изобретения;
фиг.2 - диаграмма, иллюстрирующая подробную структуру кадра нисходящей линии связи, проиллюстрированного на фиг.1;
фиг.3 - диаграмма, схематически иллюстрирующая повторение последовательности RS, используемой для образования подканала разнесенного приема нисходящей линии связи, согласно варианту осуществления настоящего изобретения;
фиг.4 - диаграмма, иллюстрирующая подробную структуру кадра восходящей линии связи, проиллюстрированного на фиг.1;
фиг.5 - блок-схема алгоритма, иллюстрирующая процесс образования подканала с АМС нисходящей линии связи и подканала разнесенного приема нисходящей линии связи, согласно варианту осуществления настоящего изобретения; и
фиг.6 - блок-схема алгоритма, иллюстрирующая процесс выделения подканала с АМС нисходящей линии связи и подканала разнесенного приема нисходящей линии связи по запросу абонентской станции (SS), согласно варианту осуществления настоящего изобретения.
Подробное описание предпочтительного варианта осуществления
Предпочтительные варианты осуществления настоящего изобретения сейчас будут подробно описаны далее в этом документе со ссылкой на прилагаемые чертежи. В последующем описании подробное описание известных функций и конфигураций, включенных в данный документ, было опущено для краткости.
Настоящее изобретение предлагает способ выделения подканалов, т.е. подканалов с адаптивными модуляцией и кодированием (АМС) и подканалов разнесенного приема, в сотовой системе связи, использующей схему множественного доступа с ортогональным частотным разделением каналов (OFDMA) («Сотовая система связи OFDMA»). В сотовой системе связи OFDMA, в которой способ выделения подканала, предложенный в настоящем изобретении, применяется к дуплексной схеме с временным разделением каналов (TDD), нисходящая линии связи (DL) и восходящая линия связи (UL) различаются по времени, и пауза переключения передачи (TTG), т.е. защитный интервал для задания границы соты, существует в интервале, переходящем от нисходящей линии связи к восходящей линии связи. Кроме того, пауза переключения приема (RTG), т.е. защитный интервал для переключения, существует в интервале, переходящем от восходящей линии связи к нисходящей линии связи. Сотовая система связи OFDMA, к которой применяется схема TDD, может регулировать время, выделенное нисходящей линии связи и восходящей линии связи посредством наименьшего общего кратного (LCM) интервала символа, образующего подканалы восходящей линии связи/нисходящей линии связи, согласно объему трафиков восходящей линии связи/нисходящей линии связи.
Однако в системе, в которой способ выделения подканала, предложенный в настоящем изобретении, может применяться к дуплексной схеме с частотным разделением каналов (FDD), выделенное нисходящей линии связи время идентично времени, выделенному восходящей линии связи, из условия, чтобы не требовались защитные интервалы, например TTG и RTG.
Фиг.1 - диаграмма, иллюстрирующая структуру кадра, применяемую в сотовой системе связи OFDMA согласно варианту осуществления настоящего изобретения. Ссылаясь на фиг.1, вся полоса частот сотовой системы связи OFDMA разделяется на B полос, т.е. с полосы № 0 до полосы № (B-1), беря в расчет подканалы с АМС. Кадр обладает периодом Tframe, и кадр включает в себя кадр нисходящей линии связи и кадр восходящей линии связи.
Кадр нисходящей линии связи включает в себя интервал 102 преамбулы, в течение которого передаются сигналы преамбулы для идентификации базовой станции (BS), запрос синхронизации и оценка канала, и интервал 101 управляющего символа, в котором передается системная информация (SI). Интервал 101 управляющего символа занимает временной интервал, заданный в сотовой системе связи OFDMA, и служит в качестве подканала разнесенного приема из условия, чтобы абонентская станция (SS) могла демодулировать подканал, включая информацию о структуре кадра. Здесь интервал 102 преамбулы и интервал 101 управляющего символа, как проиллюстрировано на фиг.1, располагаются в заголовке кадра нисходящей линии связи, так что SS может быстро распознать условия сотовой системы связи OFDMA.
Кадр восходящей линии связи включает в себя интервал 105, в котором передаются сигнал начального доступа и управляющий сигнал SS восходящей линии связи. Как проиллюстрировано на фиг.1, интервал 105 для передачи сигнала начального доступа и управляющего сигнала восходящей линии связи располагается в заголовке кадра восходящей линии связи, так что сотовая система связи OFDMA может быстро распознать условия SS. Кроме того, кадр восходящей линии связи отдельно задает интервал для начального доступа SS, так что сигнал от SS, которая не получила синхронизацию восходящей линии связи, не должен служить в качестве помех каналу данных.
Фиг.2 - диаграмма, иллюстрирующая подробную структуру кадра нисходящей линии связи, проиллюстрированного на фиг.1. Однако до того, как дано описание фиг.2, следует отметить, что отношение подканалов с АМС нисходящей линии связи к подканалам разнесенного приема нисходящей линии связи может определяться адаптивно на основе символа OFDM. Кроме того, в последующем описании символ OFDM будет называться «символ» для простоты.
Ссылаясь на фиг.2, подканалы с АМС нисходящей линии связи образуются путем группировки множества элементов дискретизации, включающих последовательные сигналы в той же полосе. Здесь термин «сигнал» идентичен в принципе поднесущей, и в последующем описании следует отметить, что сигнал обладает смешанным понятием из понятия сигнала и понятия поднесущей.
Подканалы разнесенного приема нисходящей линии связи образуются путем группировки всех поднесущих в интервалах символов, выделенных для подканалов разнесенного приема нисходящей линии связи, в заданное количество групп, выбирая одну поднесущую из каждой группы и объединяя затем выбранные поднесущие. Здесь поднесущие, выбранные из соответствующих групп для образования подканалов разнесенного приема нисходящей линии связи, определяются согласно последовательности Рида-Соломона (RS).
Например, если допустить, что количество полос равно 24, то один подканал включает в себя 48 сигналов, каждый элемент дискретизации включает в себя 8 сигналов данных, и один подканал с АМС нисходящей линии связи включает в себя 6 элементов дискретизации, принадлежащих каждой полосе.
На фиг.2 один подканал с АМС нисходящей линии связи выделяется SS № 1, и два подканала с АМС нисходящей линии связи выделяются SS № 3. Когда 3 интервала символа используются как интервалы разнесенного приема для выделения подканалов разнесенного приема нисходящей линии связи, образуются 48 групп по 3 символа посредством деления всех поднесущих сотовой системы связи OFDMA на 16 групп в каждом интервале символа, и подканал разнесенного приема нисходящей линии связи образуется посредством выбора одной поднесущей из каждой группы. Ниже таблица 1 иллюстрирует пример структуры параметра для сотовой системы связи OFDMA, использующей 1024-точечное быстрое преобразование Фурье (FFT).
Как описано выше, подканалы разнесенного приема нисходящей линии связи образуются с использованием последовательности RS. То есть подканал разнесенного приема нисходящей линии связи, включающий в себя 48 сигналов данных, образуется посредством задания интервала символа, в котором необходимо образовать подканал разнесенного приема нисходящей линии связи, деления сигналов данных в заданном интервале символа на 48 групп, состоящих из соседних сигналов данных, и выбора 1 сигнала данных на группу согласно последовательности RS. Здесь количество сигналов данных на группу определяет размер поля Галуа (GF), в котором задается последовательность RS.
Ниже таблица 2 иллюстрирует соответствующие параметры для интервала 1 символа, интервала 2 символов и интервала 4 символов, включенных в подканал разнесенного приема нисходящей линии связи. Проиллюстрированные в таблице 2 параметры даются для системы, в которой имеются 768=48·16 сигналов данных на символ.
Ссылаясь на таблицу 2, если подканалы разнесенного приема нисходящей линии связи образуются в интервале 1 символа, то количество подканалов разнесенного приема нисходящей линии связи, включающих в себя 48 сигналов данных, становится 16, и увеличение в интервале символа, в котором задаются подканалы разнесенного приема нисходящей линии связи, увеличивает количество подканалов разнесенного приема нисходящей линии связи и также увеличивает размер GF.
Как описано выше, выбранный сигнал из каждой группы для образования подканала разнесенного приема нисходящей линии связи определяется посредством последовательности RS, и так как каждая группа имеет Q сигналов, сигнал выбирается по такому принципу, что он соответствует одному элементу из GF(Q), имеющему Q соответствующих элементов. То есть, если последовательность подканала разнесенного приема нисходящей линии связи задается в GF(Q), то базисная последовательность задается как Pо={1, α, α2, ..., αQ-2}, где α обозначает примитивный элемент из GF(Q).
После того, как таким способом задается базисная последовательность, может быть представлено определение «для 0 ≤ Q-1, Ps = αsPо (перестановка Pо s раз), и для s = Q-1, Ps = {0, 0, ..., 0, 0}» для подканала № s разнесенного приема нисходящей линии связи. Здесь Ps обозначает последовательность подканала разнесенного приема нисходящей линии связи, используемую для образования подканала № s разнесенного приема нисходящей линии связи, и подканал разнесенного приема нисходящей линии связи образуется посредством выбора поднесущей из каждой группы, согласно последовательности Ps подканала разнесенного приема нисходящей линии связи. Так как базисная последовательность Pо, заданная в GF(Q), имеет длину (Q-1), если (Q-1) меньше 48, то подканал разнесенного приема нисходящей линии связи образуется посредством формирования последовательности с длиной, большей 48, путем повторения той же последовательности, и затем разделения сформированной длинной последовательности на последовательность с (Q-1)=48. Также, если (Q-1) больше 48, то подканал разнесенного приема нисходящей линии связи образуется посредством разделения последовательности с (Q-1)>48 на последовательность с (Q-1)=48.
Фиг.3 - диаграмма, схематически иллюстрирующая повторение последовательности RS, используемой для образования подканала разнесенного приема нисходящей линии связи, согласно варианту осуществления настоящего изобретения. На фиг.3 повторяется последовательность RS с Q=16. Поэтому последовательность подканала разнесенного приема нисходящей линии связи, используемая для образования подканала разнесенного приема нисходящей линии связи, формируется посредством повторения четыре раза той же последовательности RS с длиной 15 и затем выбора 48 элементов из элементов повторенной последовательности, начиная с первого элемента. Конкретнее, для GF(16), так как Pо = {1, α, α2, ..., aQ-2} = {1, 2, 4, 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9} и длина равна 15, подканал № 0 разнесенного приема нисходящей линии связи образуется посредством формирования последовательности № 0 подканала разнесенного приема нисходящей линии связи для подканала № 0 разнесенного приема нисходящей линии связи путем повторения Pо четыре раза и выбора 48 элементов из переднего элемента, и затем выбора поднесущей из каждой группы согласно последовательности № 0 подканала разнесенного приема нисходящей линии связи. После этого подканалы с № 1 по № 14 разнесенного приема нисходящей линии связи образуются путем циклического сдвигания Pо и затем повторения вышеупомянутого процесса.
В заключение последовательность подканала разнесенного приема нисходящей линии связи, используемая для образования подканала № 15 разнесенного приема нисходящей линии связи, задается как последовательность, состоящая из всех 0-элементов. Далее, для того чтобы структуры подканала разнесенного приема нисходящей линии связи для сот стали различными, последовательность для соты № β задается как Ps,β = Ps + β1·{α2, α4, α6, ..., α2(Q-1}} + β0·{1, 1, ..., 1, 1}; β1, β0 GF (Q). Здесь β обозначает идентификатор соты (Cell ID), и так как Cell ID β = β1·Q+β0, то может различаться максимум Q2 сот. В этом случае максимальное количество наложенных поднесущих между различными сотами {Ps,β} равно 2. Если β1 установлено в 0, то количество Cell ID становится равным Q и максимальному количеству поднесущих, наложенных между подканалами разнесенного приема нисходящей линии связи различных сот. Когда та же последовательность RS повторяется из-за (Q-1)<48, количество наложенных поднесущих возрастает пропорционально количеству повторений той же последовательности RS.
Фиг.4 - диаграмма, иллюстрирующая подробную структуру кадра восходящей линии связи, проиллюстрированного на фиг.1. Как проиллюстрировано на фиг.4, подканал с АМС восходящей линии связи очень похож на подканал с АМС нисходящей линии связи в части структуры. Однако для подканала разнесенного приема восходящей линии связи соседствующие друг с другом ячейки во временной области и частотной области задаются для увеличения кратности разнесения в частотной области. Например, если допускается, что подканал содержит 48 сигналов и каждая ячейка включает в себя 8 сигналов данных, то подканал разнесенного приема восходящей линии связи включает в себя 6 ячеек, выбранных по всей полосе частот. Кратность разнесения зависит от количества ячеек, составляющих один подканал разнесенного приема восходящей линии связи.
Далее, для того чтобы адаптивно управлять отношением подканалов с АМС восходящей линии связи к подканалам разнесенного приема восходящей линии связи, вариант осуществления настоящего изобретения поддерживает режим, в котором подканал разнесенного приема восходящей линии связи образуется посредством выбора того же количества элементов дискретизации из каждой полосы. Для того чтобы поддерживать вышеупомянутый режим, количество поднесущих в одном символе, включенном в ячейку, следует установить равным делителю количества поднесущих, составляющих элемент дискретизации. Например, если допустить, что один элемент дискретизации включает в себя 16 сигналов данных и 2 пилот-сигнала, то количество сигналов на символ, включенный в 1 ячейку, может устанавливаться в 2, 3, 6 и 9, которые являются делителями 18.
На фиг.4 9-сигнальные ячейки формируются посредством выбора 3 сигналов на символ в 3 интервалах символа, и одна поднесущая выбирается из каждой ячейки и используется как пилот-сигнал. В сотовой системе связи OFDMA, где используются 1024-точечное FFT и 864 сигнала, образуются 288 ячеек. Так как восходящая линия связи может разделяться на подканалы с АМС восходящей линии связи и подканалы разнесенного приема восходящей линии связи на основе символа, в основном будет допускаться, что 96/6=16 подканалов разнесенного приема восходящей линии связи образуются с 288/3=96 ячейками. Следовательно, подканал разнесенного приема восходящей линии связи образуется путем создания шести 16-ячеечных групп и выбора 1 ячейки из каждой группы. Здесь последовательность подканала разнесенного приема восходящей линии связи, используемая для выбора ячеек, включенных в подканал разнесенного приема восходящей линии связи, формируется с первыми 6 элементами из последовательности RS, заданной в GF(16).
К тому же настоящее изобретение может поддерживать различные коэффициенты повторного использования частоты в одном кадре. Здесь различные коэффициенты повторного использования частоты могут поддерживаться со следующими двумя схемами.
Первая схема устанавливает количество полос кратным коэффициенту повторного использования частоты и выбирает полосы в форме прочеса. Например, в сотовой системе связи OFDMA, в которой имеются 12 полос и коэффициент повторного использования частоты равен 3, первая схема делит индексы полос на 3 группы {0, 3, 6, 9}, {1, 4, 7, 10} и {2, 5, 8, 11}, и дает каждой соте, т.е. каждой BS, возможность использовать полосы, существующие в различных группах.
Вторая схема так задает количество элементов дискретизации, включенных в каждую полосу, чтобы стать кратным коэффициенту повторного использования частоты, и выбирает элементы дискретизации в форме прочеса. Например, в сотовой системе связи OFDMA, в которой каждые 8 элементов дискретизации, включенных в одну полосу, и коэффициент повторного использования частоты равен 4, вторая схема делит индексы элементов дискретизации на 4 группы {0, 4}, {1, 5}, {2, 6} и {3, 7}, и дает каждой BS возможность использовать полосы, существующие в различных группах.
Сейчас будет сделано описание действия для выделения подканалов с АМС и подканалов разнесенного приема, используя вышеупомянутую структуру кадра.
Фиг.5 - блок-схема алгоритма, иллюстрирующая процесс образования подканала с АМС нисходящей линии связи и подканала разнесенного приема нисходящей линии связи, согласно варианту осуществления настоящего изобретения. Хотя процесс образования подканала с АМС и подканала разнесенного приема будет описан здесь со ссылкой на процесс для образования подканала с АМС нисходящей линии связи и подканала разнесенного приема нисходящей линии связи, процесс для образования подканала с АМС восходящей линии связи и подканала разнесенного приема восходящей линии связи также похож на процесс для образования подканала с АМС нисходящей линии связи и подканала разнесенного приема нисходящей линии связи.
Ссылаясь на фиг.5, BS изначально использует весь кадр для подканалов разнесенного приема нисходящей линии связи. SS, следящая за избирательностью по частоте и изменением во времени его канала, запрашивает у BS выделение подканала с АМС нисходящей линии связи, если избирательность по частоте больше либо равна заданному значению, и изменение во времени меньше либо равно заданному значению. BS постоянно следит, не принимаются ли запросы на выделение подканала с АМС нисходящей линии связи от ее SS на этапе S501. На основе результата слежения BS определяет размер ресурсов, т.е. интервалов символов, для выделения подканалам с АМС нисходящей линии связи согласно количеству SS, от которых принимаются запросы выделения подканала с АМС нисходящей линии связи.
Например, если количество SS, запрашивающих выделение подканалов с АМС нисходящей линии связи, составляет 1/3 общего количества SS, и один кадр нисходящей линии связи имеет 18 символов, то BS выделяет 6 интервалов символов в качестве интервалов подканала с АМС нисходящей линии связи и выделяет остальные 12 интервалов символов в качестве интервалов подканала разнесенного приема нисходящей линии связи на этапе S502.
После того, как таким способом определены интервалы символа разнесенного приема нисходящей линии связи, подканалы разнесенного приема нисходящей линии связи формируются способом, описанным со ссылкой на фиг.2. Например, когда 12 интервалов символа определяются как интервалы для формирования подканалов разнесенного приема нисходящей линии связи, если последовательные 4 символа задаются как один временной интервал, то формируются 64 подканала разнесенного приема нисходящей линии связи в 1 временном интервале, используя GF(64), и формируются 3 таких временных интервала. В процессе конфигурирования сотовой системы связи OFDMA такая информация о структуре формируется в табличной форме и задается как предлагаемая структура № 1, предлагаемая структура № 2, ..., предлагаемая структура № М на этапе S503.
Если BS транслирует уникальный номер выбранной предлагаемой структуры всем своим SS через широковещательный канал, то SS могут определить расположения выделенных им сигналов для каждой предлагаемой структуры, после того как предоставляются только номера выделения подканалов с АМС нисходящей линии связи и номера выделения подканалов разнесенного приема нисходящей лини связи на этапе S504.
Фиг.6 - блок-схема алгоритма, иллюстрирующая процесс выделения подканала с АМС нисходящей линии связи и подканала разнесенного приема нисходящей линии связи по запросу SS, согласно варианту осуществления настоящего изобретения. Хотя процесс для выделения подканала с АМС и подканала разнесенного приема будет описан здесь со ссылкой на процесс для выделения подканала с АМС нисходящей линии связи и подканала разнесенного приема нисходящей линии связи, процесс для выделения подканала с АМС восходящей линии связи и подканала разнесенного приема восходящей линии связи также похож на процесс для выделения подканала с АМС нисходящей линии связи и подканала разнесенного приема нисходящей линии связи.
Ссылаясь на фиг.6, SS измеряет отношение мощности несущей к помехе (C/I) каждой полосы и изменение во времени ее канала в установленные периоды на этапе S601, и определяет, необходимо ли запрашивать выделение подканала с АМС нисходящей линии связи на этапе S602. Здесь SS определяет, что необходимо запрашивать выделение подканала с АМС нисходящей линии связи, если разница C/I между полосам больше либо равна заданному значению, и изменение во времени ее канала меньше либо равно заданному значению.
Хотя и не отдельно проиллюстрировано на фиг.6, SS может возвращать C/I каждой полосы к BS в установленные периоды или когда необходимо. Здесь C/I становится информацией о качестве канала (CQI) SS.
Если определяется, что необходимо запрашивать выделение подканала с АМС нисходящей линии связи, то SS запрашивает BS о выделении подканала с АМС нисходящей линии связи на этапе S603. Однако если определяется, что нет необходимости запрашивать выделение подканала с АМС нисходящей линии связи, то SS запрашивает BS о выделении подканала разнесенного приема нисходящей линии связи на этапе S604.
После приема запроса на выделение подканала с АМС нисходящей линии связи от SS BS определяет приоритеты выделения подканалов с АМС нисходящей линии связи согласно объему и типу данных, которые необходимо передать к SS, и выделяет подканал с АМС нисходящей линии связи, запрошенный SS. Если нет подканала с АМС нисходящей линии связи и подканала разнесенного приема нисходящей линии связи для выделения SS, BS выделяет подканалы для режима, отличного от запрошенного SS режима функционирования, или может не выделить подканал с АМС нисходящей линии связи и подканал разнесенного приема нисходящей линии связи в соответствующем кадре. Когда BS передает SS информацию о выделенных подканале с АМС нисходящей линии связи и подканале разнесенного приема нисходящей линии связи, SS принимает информацию о выделенных подканале с АМС нисходящей линии связи и подканале разнесенного приема нисходящей линии связи от BS на этапе S605.
SS определяет, выделены ли для этой цели подканал с АМС нисходящей линии связи и подканал разнесенного приема нисходящей линии связи посредством анализа принятой информации о выделении подканала с АМС нисходящей линии связи и подканала разнесенного приема нисходящей линии связи, и восстанавливает информационные данные посредством демодулирования соответствующих подканалов согласно информации о выделении подканала с АМС нисходящей линии связи и подканала разнесенного приема нисходящей линии связи на этапе S606.
Как описано выше, настоящее изобретение размещает интервал преамбулы и интервал управляющего символа в заголовке кадра нисходящей линии связи из условия, чтобы SS могла быстро определить начальную синхронизацию и системные условия. Кроме того, настоящее изобретение задает отдельный интервал для начального доступа в кадре нисходящей линии связи, тем самым не допуская, чтобы сигнал передачи SS, которая не смогла получить синхронизацию с BS, служил в качестве помех каналу данных.
Более того, настоящее изобретение может образовывать как подканал с АМС, так и подканал разнесенного приема в одном кадре, и может адаптивно управлять отношением радиоресурсов, т.е. интервалов символов, включенных в подканалы с АМС, к радиоресурсам, включенным в подканалы разнесенного приема в кадре, тем самым содействуя эффективному управлению ресурсами. Кроме того, настоящее изобретение может образовывать подканалы с АМС и подканалы разнесенного приема из условия, чтобы поддерживались различные коэффициенты повторного использования частоты в том же кадре.
Несмотря на то, что настоящее изобретение показано и описано со ссылкой на его определенные предпочтительные варианты осуществления, специалистам в данной области техники будет понятно, что различные изменения по форме и содержанию могут быть сделаны в нем без отклонения от сущности и объема настоящего изобретения, которые определены прилагаемой формулой изобретения.
Изобретение относится к системе связи. Способ выделения подканала в передатчике сотовой системы связи множественного доступа с ортогональным частотным разделением каналов (OFDMA), в которой вся полоса частот включает в себя множество полос, причем каждая из полос включает в себя множество элементов дискретизации, и каждый из элементов дискретизации включает в себя множество поднесущих. Способ заключается в том, что разделяют заданный временной интервал на временной интервал подканала с адаптивными модуляцией и кодированием (АМС) и временной интервал подканала разнесенного приема; выбирают любую из множества полос во временном интервале подканала с АМС; выбирают заданное количество элементов дискретизации из множества элементов дискретизации в выбранной полосе и выделяют выбранные элементы дискретизации подканалу с АМС. 3 н. и 15 з.п. ф-лы, 6 ил., 2 табл.
ПЕРЕДАЧА ЦИФРОВЫХ СИГНАЛОВ ПОСРЕДСТВОМ МУЛЬТИПЛЕКСИРОВАНИЯ С ОРТОГОНАЛЬНЫМ ЧАСТОТНЫМ РАЗДЕЛЕНИЕМ | 1998 |
|
RU2216873C2 |
СПОСОБ ПЕРЕДАЧИ ИНФОРМАЦИИ С ЗАЩИТОЙ ОТ ОШИБОК, СПОСОБ ПРИЕМА ИНФОРМАЦИИ С ЗАЩИТОЙ ОТ ОШИБОК И ПЕРЕДАЮЩАЯ СИСТЕМА ДЛЯ ПЕРЕДАЧИ ИНФОРМАЦИИ | 1996 |
|
RU2186459C2 |
US 6545997, 08.04.2003 | |||
US 6430148, 06.08.2002. |
Авторы
Даты
2008-05-27—Публикация
2005-03-05—Подача