СПОСОБ РАЗРАБОТКИ НЕФТЯНЫХ ИЛИ НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ НА ПОЗДНЕЙ СТАДИИ Российский патент 2009 года по МПК E21B43/00 

Описание патента на изобретение RU2346148C1

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяного или нефтегазоконденсатного месторождения с большой историей эксплуатации или находящегося на поздней стадии разработки.

Известен способ разработки сложнопостроенной залежи нефти, включающий закачку вытесняющего агента через нагнетательные скважины и отбор пластовых флюидов через добывающие скважины, построение карт геологических и технологических параметров, выбор наиболее эффективных методов воздействия на пласт и их использование на реальной залежи, отличающийся тем, что создают геолого-гидродинамическую модель залежи, включающую серию геологических карт и карт разработки с указанием на них координат скважины, геологических параметров пласта по проницаемым интервалам, данных пластовых и забойных давлений с начала разработки, координат линий выклинивания пласта, внутренних и внешних контуров нефтеносности, осуществляют структуризацию модели по каждому показателю путем сложения и последующего нормирования значений параметров, для чего строят карты: структурную, эффективной нефтенасыщенной толщины пласта, начальной нефтенасыщенности коллекторов, их песчанистости и расчлененности, начальных балансовых запасов нефти и накопленных отборов нефти, воды, жидкости и нагнетания воды, а также карты текущей нефтенасыщенности и изобар на разные даты с начала разработки, при этом учитывают области развития геологических параметров выше и ниже кондиционных значений, подбор которых осуществляют по аддитивным картам, построенным путем повариантных расчетов раздельно для каждой группы методов воздействия на пласт (Патент РФ №2123582, опублик. 1998.12.20).

Известный способ не позволяет построить адекватную геолого-гидродинамическую модель для месторождения с большой историей эксплуатации или на поздней стадии с учетом техногенных изменений за продолжительный период эксплуатации месторождения, исключает возможность удовлетворительной ее адаптации по истории и, следовательно, не позволяет обосновать эффективные варианты прогноза на перспективу с достижением высокой нефтеотдачи.

Наиболее близким к предложенному изобретению по технической сущности является способ, который включает проведение геофизических исследований скважин (ГИС), геолого-промысловых исследований скважин и лабораторные исследования свойств пластовых флюидов и пористых сред, интерпретацию материалов ГИС, построение детальной объемной геолого-гидродинамической модели слоисто-неоднородного пласта расчленением и корреляцией разрезов по данным ГИС, определение объемов накопленной добычи нефти для добывающих скважин и объемов закачек для нагнетательных скважин и выдачу рекомендаций по проведению геолого-технических мероприятий. Дополнительно проводят комплекс каротажных исследований скважин и осуществляют построение локальных геолого-статистических разрезов по комплексу каротажных кривых. Для расчленения и корреляции разрезов используют адаптивный подход, заключающийся в накоплении знаний об особенностях геологического строения пласта путем последовательного перехода от выявления глобальных закономерностей изменения геолого-геофизических характеристик к выявлению и учету локальных особенностей строения. На основе этого строят детальную объемную геолого-гидродинамическую модель слоисто-неоднородного пласта и дополнительно подтверждают гидродинамическую связанность скоррелированных пропластков соседних скважин путем сопоставления объемов и динамики закачки и интервалов перфорации нагнетательных скважин и динамики отбора нефти и воды, интервалов перфорации, добывающих скважин и/или путем проведения дополнительных исследований геофизическими методами (Патент РФ №2135766, опублик. 1999.08.27 - прототип).

Известный способ не позволяет построить адекватную сложившемуся состоянию месторождения геолого-гидродинамическую модель, которая бы отражала техногенные изменения коллекторов и насыщающих их флюидов, происшедшие в связи с изменениями термобарических условий и взаимодействия пластовых и закачиваемых жидкостей. В ряде случаев имевшие место техногенные изменения коллекторов и флюидов являются необратимыми. Кроме того, информационная база за всю историю разработки месторождения по добыче продукции и закачке рабочего агента по скважинам и пластам, а также по пластовым и забойным давлениям или отсутствует или создана не на основе прямых измерений и не отражает реальные фильтрационные процессы в пластах за предшествующий период эксплуатации. Указанные факторы практически исключат создание геолого-гидродинамической модели, адекватно отражающей текущее состояние месторождения по фильтрационно-емкостным свойствам (ФЕС) и характеру насыщения флюидами и их свойств, создает непреодолимые проблемы при ее адаптации и снижает степень обоснованности рекомендуемых мероприятий по доразработке месторождения и точность прогнозов добычи продукции на перспективу.

В предложенном способе решается задача повышения нефтегазоконденсатоотдачи месторождения с большой историей эксплуатации на поздней стадии.

Задача решается тем, что в способе разработки нефтяного или нефтегазоконденсатного месторождения на поздней стадии, включающем отбор продукции через добывающие скважины, закачку рабочего агента через нагнетательные скважины, каротажные исследования скважин, анализы керна и пластовых флюидов, анализ данных по эксплуатации добывающих и нагнетательных скважин, построение геолого-гидродинамической модели разработки продуктивных отложений, выявление участков с остаточной насыщенностью продуктивных отложений, составление мероприятий по их доизвлечению и прогноз показателей добычи продукции на геолого-гидродинамической модели, последующую разработку месторождения в соответствии с данными геолого-гидродинамической модели, согласно изобретению дополнительно проводят сейсмические исследования месторождения, каротажные исследования проводят на действующих скважинах с охватом 20-25% существующего фонда скважин, определяют текущие значения пористости, проницаемости, положения водонефтяного контакта, газонефтяного контакта и остаточную нефтегазоконденсатонасыщенность пластов, бурят новые скважины или забуривают боковые стволы с отбором керна в объеме 0,5-1,5% существующего фонда скважин, и производят определение свойств продуктивных пластов по керну, проводят отбор глубинных проб флюида на 3-5% действующего фонда скважин и их комплексный анализ, проводят термогидродинамические исследования скважин с охватом не менее 60% действующего фонда, создают базу данных по текущим параметрам на поздней стадии разработки пластов и строят геолого-гидродинамическую модель текущего состояния разработки месторождения, учитывающего имеющие место техногенные изменения объекта с ее помесячной адаптацией по показателям эксплуатации скважин с высокой достоверностью за последние 1-3 года, устанавливают состояние, объемы и распределение техногенноизмененных запасов углеводородов месторождения, рассчитывают различные варианты разработки на прогноз с учетом сложившихся гидротермодинамических условий и физико-химических характеристик пластов и насыщающих флюидов и реализуют на месторождении наиболее эффективный из них по технико-экономическим показателям.

Сущность изобретения в известных технических решениях построение и адаптация геолого-гидродинамической модели нефтяного или нефтегазоконденсатного месторождения, находящегося на поздней стадии разработки, осуществляется с использованием выполненных за всю историю эксплуатации сейсмических и каротажных исследований скважин и добываемых флюидов, а также показателей работы добывающих и нагнетательных скважин. Построенная таким образом модель учитывает слишком много бесполезных данных, накопленных за всю историю разработки месторождения. Эти данные искажают текущую картину состояния разработки и геологического состояния пластов. В то же время подобный подход весьма поверхностно учитывает произошедшие изменения коллекторов и насыщающих пласт флюидов в самые последние годы разработки, что является наиболее важным для создания адекватной модели разработки. На фоне огромного объема данных эта информация становится несущественной или малозначимой. Указанные факторы исключают возможность создания адекватной сложившимся на месторождении условиям геолого-гидродинамической модели, снижают эффективность ее применения для решения задач повышения нефтегазоконденсатоотдачи объектов, что приводит к снижению эффективности разработки и нефтегазоконденсатоотдачи месторождения. В предложенном способе решается задача повышения эффективности разработки и нефтегазоконденсатоотдачи месторождения. Задача решается следующим образом.

При разработке нефтяного или нефтегазоконденсатного месторождения на поздней стадии ведут отбор продукции через добывающие скважины, закачку рабочего агента через нагнетательные скважины. Проводят сейсмические исследования месторождения, проводят каротажные исследования на действующих скважинах с охватом 20-25% существующего фонда скважин, определяют текущие значения пористости, проницаемости, положения водонефтяного контакта, газонефтяного контакта и остаточную нефтегазоконденсатонасыщенность пластов, забуривают боковые стволы из скважин в объеме 0,5-1,5% существующего фонда скважин, производят отбор керна при бурении и определение свойств продуктивных пластов по керну, проводят отбор глубинных проб флюида на 3-5% действующего фонда скважин и их комплексный анализ, проводят термогидродинамические исследования скважин с охватом не менее 60% действующего фонда, создают базу данных по текущим параметрам на поздней стадии разработки пластов и строят геолого-гидродинамическую модель текущего состояния разработки месторождения, учитывающего имеющие место техногенные изменения объекта с ее помесячной адаптацией по показателям эксплуатации скважин с высокой достоверностью за последние 1-3 года, устанавливают состояние, объемы и распределение техногенно измененных запасов углеводородов месторождения, рассчитывают различные варианты разработки на прогноз с учетом сложившихся гидротермодинамических условий и физико-химических характеристик пластов и насыщающих флюидов и реализуют на месторождении наиболее эффективный из них по технико-экономическим показателям.

Для составления геолого-гидродинамической модели разработки месторождения используют данные за последние 1-3 года. Выполняют анализ состояния разработки нефтяного или нефтегазоконденсатного месторождения и устанавливают особенности и проблемы сложившегося положения на объекте разработки, определяют местоположение и номера скважин и выполняют комплекс геофизических исследований, включающий ядерно-физические и волновые методы (например, КНК - компенсационный нейтронный каротаж; ИННК - импульсный нейтрон-нейтронный каротаж; ИНГК - импульсный нейтронный гамма-каротаж; СГК - спектрометрический гамма-каротаж; ИНГКС - спектрометрический импульсный нейтронный гамма-каротаж (С/О-каротаж); МАК - многозондовый акустический каротаж) с охватом 20-25% фонда скважин, термогидродинамических исследований с охватом не менее 60%, отбор глубинных проб флюидов - 3-5%, бурение новых скважин или боковых горизонтальных стволов с отбором керна - 0,5-1,5% действующего фонда. Проводят также исследования контрольных, пьезометрических и других категорий скважин. Обрабатывая результаты исследований получают информацию о техногенно измененных параметрах коллекторов и пластовых флюидов, которую используют в качестве новой базы данных в районе исследованных скважин. Проводят современные сейсмические исследования (3Д - 3-х мерное (площадное) сейсмическое исследование; 3Д/3С - 3-х мерное (площадное) сейсмическое исследование с 3-х компонентной регистрацией; 4Д - 4-х мерное (4-е измерение время) площадное сейсмическое исследование), при интерпретации результатов которых используют скоростные характеристики техногенно измененных объектов по данным выполненного комплекса по каротажу скважин и определяют параметры коллекторов и характер их насыщения в межскважинных областях месторождения, дополняя новую базу данных. Строят геологогидродинамическую модель объекта разработки с использованием базы данных, отражающей техногенно измененное его состояние, проводят помесячную адаптацию модели за последние 1-3 года эксплуатации месторождения, создав за этот период достоверную информационную базу по показателям работы добывающих и нагнетательных скважин, а также материалам их термогидродинамических и геофизических исследований в порядке контроля за процессом разработки за этот промежуток времени. Устанавливают состояние, объемы и распределение техногенно измененных запасов углеводородов в залежи. Разрабатывают комплекс технологических мероприятий с целью повышения уровня текущей добычи продукции и конечного коэффициента извлечения, выполняют прогнозные расчеты по вариантам на созданной геологогидродинамической модели, адекватно описывающей текущее техногенно измененное состояние объекта, выбирают лучший вариант по технико-экономическим показателям и внедряют на месторождении.

Пример конкретного выполнения

Нефтегазоконденсатное месторождение имело следующие начальные характеристики: глубина - 2800 м; давление - 57,0 МПа; температура - 110°С; эффективная нефтенасыщенная толщина - 44 м; газоконденсатонасыщенная - 110 м; содержание конденсата в газе до 600 г/м3; давление начала конденсации - 56,0 МПа; насыщения нефти газом - 37,0 МПа; начальный газовый фактор - 520 м3/т; месторождение активно разрабатывается около 20 лет; оно началось с отбора нефти и газа, но закачка воды и сухого газа для поддержания давления была организована с опозданием. На месторождении пробурены более 250 скважин различного назначения. Пластовое давление быстро снижалось и составило 12,0-13,0 МПа. Произошли существенные изменения положения водонефтяного и газонефтяного контактов, разгазирование нефти, выпадение из газа конденсата и, очевидно, что ухудшились фильтрационно-емкостные характеристики коллектора из-за деформационных явлений. Имеет место техногенно измененное месторождение, информация об этом в материалах начальных сейсмических исследований и каротажа пробуренных скважин, конечно, не содержится.

Проводят анализ разработки месторождения и устанавливают зоны сильного подъема водонефтяного контакта и снижения газонефтяного контакта, намечают и бурят скважины или боковые горизонтальные стволы с отбором керна и выполняют геофизические исследования через колонну и определяют текущие значения параметров пласта. Проводят термогидродинамические исследования и определяют работающие интервалы, выполняют сейсмические исследования определяют характер насыщенности и пористости пласта на межскважинных участках.

Производят отбор глубинных проб флюида и выполняют их анализ: содержание конденсата в газе стало порядка 100 г/м3; газовый фактор уменьшился до 360 м3/т, пластовая температура в среднем снизилась до 107,5°С.

Данные сводят в таблицы 1-4. Ниже приведен порядок ввода информации при построении геологической модели в программном комплексе Petrel.

1. Устьевые координаты скважин.

Номер скважиныXY

2. Инклинометрия.

ГлубинаАзимутСмещениеУгол склоненияdxdy

3. Альтитуда, индексы пластов.

4. LAS-файлы.

ГлубинаПористостьПроницаемость

5. Трендовые поверхности (сейсмические, продукт CPS -двумерные модели пластов или оцифрованные структурные карты).

6. Заключения ГИС по скважинам.

Передача информации в программный комплекс Eclipse. После построения геологической модели формируются файлы (числовые массивы), где ключами обозначены: а) сеточные координаты, б) емкостные свойства пласта (по узлам сетки пористость, проницаемость, нефтенасыщенность). Также формируется файл с траекториями скважин и их сеточными координатами.

Для формирования файла Schedule (история разработки), необходимы следующие таблицы.

Таблица 1деньмесяцгодНомер скважиныПризнак перфорацииИндекс пластаГлубина начала перфорацииГлубина конца перфорацииСкин-фактор

Таблица2Номер скважиныдатаОтбор нефтиОтбор водыОтбор газаЗакачка водыЗакачка газаЗабойные давления

Таблица 3Номер скважиныНаименование группы

Таблица 4Индекс пластаСеточный номер по вертикали

Файл траектории скважин и геометрия модели.

По окончании работы опции Schedule формируется файл Schedule для импорта в Eclipse.

Используя полученную базу данных (таблицы 1-4), строят геологогидродинамическую модель техногенно измененного месторождения, применяя признанные в этой области программные средства, например Petrel, Eclipse. Для адаптации модели используют фактические помесячные показатели работы скважин за последние 1-3 года (таблицы 5-9), включая результаты термогидродинамических исследовании.

Анализ состояния разработки месторождения по адекватной текущему техногенно измененному состоянию адаптированной модели показывает участки с высокой остаточной нефтегазоконденсатонасыщенностью, термодинамические аномалии и уточненные водо- и газонефтяные контакты. Мероприятия по совершенствованию разработки и повышению коэффициента нефтегазоконденсатоизвлечения включают оптимизацию системы и интенсивности закачки воды и сухого газа на определенных участках, бурение дополнительных скважин и боковых горизонтальных стволов на пласты и зоны с высокой остаточной нефтегазоконденсатонасыщенностью, разукрупнение эксплуатационных объектов, закачку потокоотклоняющих реагентов и др. по вариантам. Выполняют расчеты прогнозных показателей добычи/закачки по вариантам на адекватной текущему состоянию месторождения геолого-гидродинамической модели и внедряют наиболее эффективный из них по технико-экономическим показателям и конечной нефтегазоконденсатоотдачи.

При внедрении предложенного способа разработки абсолютные приросты коэффициентов извлечения по отношению к достигаемым при реализации действующего проекта составляет не менее:

по нефти - 2,5-3,0%;

по конденсату - 2,0-2,5%;

по газу - 1,5-2,0%.

Применение предложенного способа позволит повысить нефтегазоконденсатоотдачу месторождения.

Похожие патенты RU2346148C1

название год авторы номер документа
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ 2012
  • Хисамов Раис Салихович
  • Халимов Рустам Хамисович
  • Назимов Нафис Анасович
  • Торикова Любовь Ивановна
  • Мусаев Гайса Лёмиевич
RU2493362C1
СПОСОБ ДОБЫЧИ ПРИРОДНОГО ГАЗА НА ПОЗДНЕЙ СТАДИИ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ 2020
  • Киселёв Михаил Николаевич
  • Архипов Юрий Александрович
  • Харитонов Андрей Николаевич
  • Юмшанов Владимир Николаевич
RU2758278C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ НА ОСНОВЕ СИСТЕМНО-АДРЕСНОГО ВОЗДЕЙСТВИЯ 2012
  • Крянев Дмитрий Юрьевич
  • Жданов Станислав Анатольевич
  • Петраков Андрей Михайлович
RU2513787C1
СПОСОБ КОНТРОЛЯ ЗА РАЗРАБОТКОЙ НЕФТЯНЫХ ЗАЛЕЖЕЙ 1998
  • Хасанов М.М.
  • Хатмуллин И.Ф.
  • Хамитов И.Г.
  • Абабков К.В.
RU2135766C1
СПОСОБ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ УГЛЕВОДОРОДОВ 2005
  • Трофимов Александр Сергеевич
  • Леонов Василий Александрович
  • Кривова Надежда Рашитовна
  • Зарубин Андрей Леонидович
  • Сайфутдинов Фарид Хакимович
  • Галиев Фатых Фаритович
  • Платонов Игорь Евгеньевич
  • Леонов Илья Васильевич
RU2292453C2
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОГО МАССИВНОГО ИЛИ МНОГОПЛАСТОВОГО ГАЗОНЕФТЯНОГО ИЛИ НЕФТЕГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ 2009
  • Дияшев Расим Нагимович
  • Харисов Ринат Гатинович
  • Рябченко Виктор Николаевич
  • Савельев Анатолий Александрович
  • Зощенко Николай Александрович
RU2432450C2
Способ адаптации геолого-гидродинамической модели пласта 2021
  • Кайгородов Сергей Владимирович
  • Рукавишников Валерий Сергеевич
  • Демьянов Василий Валерьевич
  • Шишаев Глеб Юрьевич
  • Матвеев Иван Владимирович
  • Еремян Грачик Араикович
RU2754741C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ 2014
  • Салимов Фарид Сагитович
  • Мороз Александр Сергеевич
RU2556094C1
СПОСОБ РАЗРАБОТКИ МЕЛКИХ И СРЕДНИХ НЕФТЯНЫХ ИЛИ НЕФТЕГАЗОВЫХ МЕСТОРОЖДЕНИЙ 2007
  • Хисамов Раис Салихович
  • Дияшев Расим Нагимович
  • Муслимов Ренат Халиуллович
  • Харисов Ринат Гатинович
RU2313662C1
Способ построения геологических и гидродинамических моделей месторождений нефти и газа 2020
  • Арефьев Сергей Валерьевич
  • Шестаков Дмитрий Александрович
  • Юнусов Радмир Руфович
  • Балыкин Андрей Юрьевич
  • Мединский Денис Юрьевич
  • Шаламова Валентина Ильинична
  • Вершинина Ирина Викторовна
  • Гильманова Наталья Вячеславовна
  • Коваленко Марина Александровна
RU2731004C1

Реферат патента 2009 года СПОСОБ РАЗРАБОТКИ НЕФТЯНЫХ ИЛИ НЕФТЕГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ НА ПОЗДНЕЙ СТАДИИ

Изобретение относится к нефтяной промышленности и может найти применение при разработке нефтяного или нефтегазоконденсатного месторождения с большой историей эксплуатации или находящегося на поздней стадии разработки. Задачей изобретения является повышение нефтегазоконденсатоотдачи месторождения с большой историей эксплуатации на поздней стадии. По способу ведут отбор продукции через добывающие скважины, закачку рабочего агента через нагнетательные скважины, каротажные исследования скважин, анализы керна и пластовых флюидов, анализ данных по эксплуатации добывающих и нагнетательных скважин, построение геолого-гидродинамической модели разработки продуктивных отложений, выявление участков с остаточной насыщенностью продуктивных отложений, составление мероприятий по их доизвлечению и прогноз показателей добычи продукции на геолого-гидродинамической модели, последующую разработку месторождения в соответствии сданными геолого-гидродинамической модели. Дополнительно проводят сейсмические исследования месторождения, каротажные исследования проводят на действующих скважинах с охватом 20-25% существующего фонда скважин, определяют текущие значения пористости, проницаемости, положения водонефтяного контакта, газонефтяного контакта и остаточную нефтегазоконденсатонасыщенность пластов. Бурят новые скважины или забуривают боковые стволы с отбором керна в объеме 0,5-1,5% существующего фонда скважин и производят определение свойств продуктивных пластов по керну. Проводят отбор глубинных проб флюида на 3-5% действующего фонда скважин и их комплексный анализ. Проводят термогидродинамические исследования скважин с охватом не менее 60% действующего фонда. Создают базу данных по текущим параметрам на поздней стадии разработки пластов и строят геолого-гидродинамическую модель текущего состояния разработки месторождения, учитывающую техногенные изменения объекта с ее помесячной адаптацией по показателям эксплуатации скважин за последние 1-3 года. Устанавливают состояние, объемы и распределение техногенно измененных запасов углеводородов месторождения. Рассчитывают различные варианты разработки на прогноз с учетом сложившихся гидротермодинамических условий, характеристик пластов и насыщающих флюидов и реализуют на месторождении наиболее эффективный из них. 9 табл.

Формула изобретения RU 2 346 148 C1

Способ разработки нефтяных или нефтегазоконденсатных месторождений на поздней стадии, включающий отбор продукции через добывающие скважины, закачку рабочего агента через нагнетательные скважины, каротажные исследования скважин, анализы керна и пластовых флюидов, анализ данных по эксплуатации добывающих и нагнетательных скважин, построение геолого-гидродинамической модели разработки продуктивных отложений, выявление участков с остаточной насыщенностью продуктивных отложений, составление мероприятий по их доизвлечению и прогноз показателей добычи продукции на геолого-гидродинамической модели, последующую разработку месторождения в соответствии с данными геолого-гидродинамической модели, отличающийся тем, что дополнительно проводят сейсмические исследования месторождения, каротажные исследования проводят на действующих скважинах с охватом 20-25% существующего фонда скважин, определяют текущие значения пористости, проницаемости, положения водонефтяного контакта, газонефтяного контакта и остаточную нефтегазоконденсатонасыщенность пластов, бурят новые скважины или забуривают боковые стволы с отбором керна в объеме 0,5-1,5% существующего фонда скважин и производят определение свойств продуктивных пластов по керну, проводят отбор глубинных проб флюида на 3-5% действующего фонда скважин и их комплексный анализ, проводят термогидродинамические исследования скважин с охватом не менее 60% действующего фонда, создают базу данных по текущим параметрам на поздней стадии разработки пластов и строят геолого-гидродинамическую модель текущего состояния разработки месторождения, учитывающую техногенные изменения объекта с ее помесячной адаптацией по показателям эксплуатации скважин за последние 1-3 года, устанавливают состояние, объемы и распределение техногенно измененных запасов углеводородов месторождения, рассчитывают различные варианты разработки на прогноз с учетом сложившихся гидротермодинамических условий, характеристик пластов и насыщающих флюидов и реализуют на месторождении наиболее эффективный из них.

Документы, цитированные в отчете о поиске Патент 2009 года RU2346148C1

СПОСОБ КОНТРОЛЯ ЗА РАЗРАБОТКОЙ НЕФТЯНЫХ ЗАЛЕЖЕЙ 1998
  • Хасанов М.М.
  • Хатмуллин И.Ф.
  • Хамитов И.Г.
  • Абабков К.В.
RU2135766C1
СПОСОБ РАЗРАБОТКИ ЗАЛЕЖИ МНОГОПЛАСТОВОГО НЕФТЯНОГО МЕСТОРОЖДЕНИЯ С ВОДОНЕФТЯНЫМИ ЗОНАМИ И/ИЛИ МАССИВНОГО ТИПА 2004
  • Хисамов Раис Салихович
  • Фаткуллин Рашид Хасанович
  • Юсупов Изиль Галимзянович
  • Рамазанов Рашит Газнавиевич
  • Миронова Любовь Михайловна
  • Никонов Владимир Анатольевич
  • Кандаурова Галина Федоровна
  • Муртазина Таслия Магруфовна
RU2282022C2
SU 1543896 А1, 20.01.1996
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ 2005
  • Хлебников Вадим Николаевич
  • Волошин Александр Иосифович
  • Телин Алексей Герольдович
  • Боксерман Аркадий Анатольевич
RU2296854C2
СПОСОБ РАЗРАБОТКИ НЕФТЕГАЗОВЫХ ЗАЛЕЖЕЙ 1992
  • Закиров Сумбат Набиевич[Ru]
  • Левочкин Василий Викторович[Ru]
  • Закиров Искандер Сумбатович[Ru]
  • Палатник Борис Мардкович[Ru]
  • Коноплев Вячеслав Юрьевич[Ru]
  • Литвак Мишель[Fr]
  • Пантелеев Геннадий Владимирович[Ru]
  • Броун Сергей Ионович[Ru]
  • Зубов Дмитрий Львович[Ru]
  • Никулин Валерий Яковлевич[Ru]
  • Семенова Галина Юрьевна[Ru]
RU2027848C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ, ОСНОВАННЫЙ НА СИСТЕМНОМ ВЫЯВЛЕНИИ СКВАЖИН, ОБВОДНЯЮЩИХСЯ ПОСТОРОННЕЙ ВОДОЙ, ИХ РЕМОНТЕ И ВВОДЕ В ЭКСПЛУАТАЦИЮ 2002
  • Епишин В.Д.
  • Лейбин Э.Л.
  • Сентюрёв А.В.
  • Шарифуллин Ф.А.
RU2214505C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ С ИСКУССТВЕННЫМ ПОДДЕРЖАНИЕМ ПЛАСТОВОГО ДАВЛЕНИЯ 2001
  • Батурин Ю.Е.
  • Юрьев А.Н.
  • Медведев Н.Я.
  • Сонич В.П.
  • Сулима С.А.
RU2190761C1
СПОСОБ ДОБЫЧИ НЕФТИ НА ПОЗДНЕЙ СТАДИИ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ, ПОДСТИЛАЕМОЙ ВОДОЙ 2005
  • Хисамутдинов Наиль Исмагзамович
  • Владимиров Игорь Вячеславович
  • Тазиев Марат Миргазиянович
  • Сагитов Дамир Камбирович
  • Алексеев Денис Леонидович
  • Буторин Олег Иванович
RU2299977C2
US 5058012 А, 15.10.1991.

RU 2 346 148 C1

Авторы

Харисов Ринат Гатинович

Ахмедов Нурмухаммад Ахмедович

Бабаджанов Ташпулат Лепесович

Дияшев Расим Нагимович

Екименко Валентина Александровна

Мухамадеев Рамиль Сафиевич

Даты

2009-02-10Публикация

2008-02-01Подача