Изобретение относится к электротехнике, в частности к электрическим машинам и электроприводу.
Аналогом является, например, многофазная индукторная машина (пат. РФ №2037940, БИ №17, 1995), содержащая ротор из магнитопроводящего материала с зубцами на поверхности и статор, у которого магнитопровод выполнен из магнитопроводящих колец и продольных замыкающих полос, а обмотки якоря выполнены кольцевыми по числу фаз.
Наиболее близка к предлагаемому изобретению электрическая машина (пат. РФ №2241298, БИ №33, 2004), содержащая ротор из магнитопроводящего материала с постоянными магнитами, полярность которых чередуется в тангенциальном направлении, и статор, у которого магнитопровод выполнен из магнитопроводящих колец с зубцами, число которых на каждом магнитопроводящем кольце в два раза меньше числа полюсов ротора. Обмотки якоря выполнены кольцевыми по числу фаз, распределенными в аксиальном направлении и размещенными между двумя соседними магнитопроводящими кольцами, при этом зубцы магнитопроводящих колец, между которыми размещена кольцевая обмотка, смещены по углу на угол, равный угловой ширине полюса ротора, а угловое положение зубцов магнитопроводящих колец различных фаз отличаемся на угол 2π/m эл. радиан, где m - число фаз.
Предлагаемое изобретение позволит создать электрическую машину с повышенной мощностью, уменьшить массу и габариты электрической машины, а также повысить технологичность ее изготовления.
Это достигается тем, что в предлагаемой электрической машине, содержащей ротор из магнитопроводящего материала с постоянными магнитами, полярность которых чередуется в тангенциальном направлении, и статор, у которого магнитопровод выполнен из магнитопроводящих колец с зубцами, число которых на каждом магнитопроводящем кольце в два раза меньше числа полюсов ротора, а обмотки якоря выполнены кольцевыми по числу фаз, распределенными в аксиальном направлении и размещенными между двумя соседними магнитопроводящими кольцами, при этом зубцы магнитопроводящих колец, между которыми размещена кольцевая обмотка, смещены по углу на угол, равный угловой ширине полюса ротора, а угловое положение зубцов магнитопроводящих колец различных фаз отличается на угол 2π/m эл. радиан, где m - число фаз, согласно изобретению магнитопроводящие кольца выполнены из магнитомягкого композиционного материала с зубцами, выступающими в осевом направлении, при этом соседние магнитопроводящие кольца, между которыми размещена кольцевая обмотка, расположены так, чтобы их выступающие в осевом направлении зубцы были направлены встречно друг другу и проходили в пазах соседнего магнитопроводящего кольца, а для замыкания магнитного потока фазы используются тороидальные магнитопроводы, расположенные между двумя соседними магнитопроводящими кольцами каждой фазы. Технологичность изготовления электрической машины можно повысить, заполнив промежутки между зубцами соседних магнитопроводящих колец одной и той же фазы не магнитным компаундом, который объединит магнитопроводящие кольца фазы в единый конструктивный элемент.
Выполнение магнитопроводящих колец из магнитомягкого композиционного материала с зубцами, выступающими в осевом направлении, причем соседние магнитопроводящие кольца, между которыми размещена кольцевая обмотка, нужно расположить так, чтобы их выступающие в осевом направлении зубцы были направлены встречно друг другу и проходили в пазах соседнего магнитопроводящего кольца, позволяет увеличить при тех же самых размерах ротора более чем в два раза магнитный поток ротора, связанный с каждой кольцевой обмоткой фаз, и, следовательно, создать в тех же габаритах электрическую машину с повышенной мощностью, либо уменьшить массу и габариты электрической машины одинаковой мощности с прототипом. Кроме того, можно повысить технологичность изготовления электрической машины, заполнив промежутки между зубцами соседних магнитопроводящих колец одной и той же фазы не магнитным компаундом, в результате чего после отверждения компаунда магнитопроводящие кольца фазы объединяются в единый конструктивный элемент, имеющий форму каркаса катушки, на который наматывается кольцевая обмотка фазы и тороидальный магнитопровод.
На фиг.1 показано осевое сечение предлагаемого двигателя. На фиг.2 показаны магнитопроводящие кольца и тороидальный магнитопровод одной из фаз статора. На фиг.3, 4 и 5 - диаметральные сечения двигателя.
В изображенном на фиг.1 двигателе в корпусе 1 размещен стальной ротор 2, закрепленный на валу 3. Магнитное поле ротора 2 создают постоянные магниты 4, намагниченные в радиальном направлении. Полярность постоянных магнитов 4 на поверхности ротора 2, показанная на фиг.1 и фиг.3-5, чередуется по угловой координате. В приведенной для примера конструкции двигателя на роторе 2 размещены двенадцать постоянных магнитов 4. В корпусе 1 двигателя неподвижно установлен статор, состоящий из магнитопроводящих колец 5, 6, 7, 8, 9 и 13, изготовленных из магнитомягкого композиционного материала. Магнитопроводящие кольца 5, 6, 7, 8, 9 и 10 во внутренней полости имеют зубцы, соответственно, 11, 12, 13, 14, 15 и 16, выступающие в аксиальном направлении. Между парами магнитопроводящих колец 5-6, 7-8, 9-10 установлены три кольцевые обмотки 17, 18 и 19, являющиеся фазами статора. Для замыкания магнитных потоков, проходящих через магнитопроводящие кольца 5, 6, 7, 8, 9 и 10, установлены тороидальные магнитопроводы 20, которые могут быть также изготовлены из магнитомягкого композиционного материала, либо навиты из ленты.
Угловая ширина зубцов 11, 12, 13, 14, 15 и 16 примерно равна угловой ширине полюса 4 ротора 2, а число зубцов 11, 12, 13, 14, 15 и 16 на каждом магнитопроводящем кольце 5, 6, 7, 8, 9 и 10, в два раза меньше числа полюсов 4 ротора 2. На фиг.2 показаны магнитопроводящие кольца 5 (7, 9) и 6 (8, 10) с выступающими в осевом направлении зубцами 11 (13, 15) и 12 (14, 16), кольцевая обмотка 17 (18, 19) и тороидальный магнитопровод 20 одной из фаз. Магнитопроводящие кольца 5 (7, 9) и 6 (8, 10) смещены по углу на угол, равный угловой ширине полюса ротора. При сборке статора магнитопроводящие кольца 5 (7, 9) и 6 (8, 10) сдвигаются в направлении, показанном на фиг.2 стрелками, так, чтобы зубцы 11 (13, 15) магнитопроводящего кольца 5 (7, 9) проходили в пазах соседнего магнитопроводящего кольца 6 (8, 10), а торцевые поверхности магнитопроводящих колец 5 (7, 9) и 6 (8, 10) выровнялись. Пары магнитопроводящих колец 5 и 6, 7 и 8, 9 и 10, между которыми размещены кольцевые обмотки 17, 18 и 19, установлены в корпусе 1 так, что их зубцы 11 и 12, 13 и 14, 15 и 16 были смещены по углу друг относительно друга на угол 2π/m электрических радиан (фиг.3, 4 и 5). В приведенной конструкции число фаз m=3, и пары магнитопроводящих колец 5-6, 7-8, 9-10 фаз смещены на треть полюсного деления.
Предлагаемая электрическая машина работает следующим образом. Пусть сначала подается ток условного положительного направления в обмотку 17, а обмотки 18 и 19 обесточены. Магнитный поток, созданный обмоткой 17, будет проходить через зубцы 11 магнитопроводящего кольца 5, через магнитопроводящее кольцо 5, затем в осевом направлении через тороидальный магнитопровод 20, снова в радиальном направлении через магнитопроводящее кольцо 5, через зубцы 12 магнитопроводящего кольца 6, пересечет воздушный зазор между зубцами 12 магнитопроводящего кольца 6 и ротором 2, через ротор 2 и из ротора 2 пройдет через зазор в зубцы 11 магнитопроводящего кольца 5. Пусть при положительном направлении тока в обмотке 17 зубцы 11 магнитопровода 5 будут иметь южную полярность, а зубцы 12 магнитопровода 6 - северную полярность. Тогда под действием электромагнитного момента ротор установится в положение, при котором магнитный поток ротора 2 и магнитный поток, созданный обмоткой 17, будут направлены согласно (фиг.3).
При выключенных обмотках 17 и 19 и подаче положительного тока в обмотку 18 магнитный поток второй фазы замыкается через магнитопроводящие кольца 7 и 8, при этом зубцы 13 магнитопроводящего кольца 7 будут южную полярность, а зубцы 14 магнитопроводящего кольца 8 северную полярность. Возникнет электромагнитный момент, разворачивающий ротор 2 так, чтобы магнитные потоки обмотки 18 и ротора 2 совпали по направлению. Ротор 2 будет вынужден развернуться на угол 2π/m эл. радиан против часовой стрелки.
Если положительный ток будет протекать в обмотке 19, а обмотки 17 и 18 будут выключены, то магнитный поток обмотки 19 будет проходить через магнитопроводящие кольца 9 и 10, и ротор 2 развернется еще на угол 2π/m эл. радиан против часовой стрелки.
Затем снова следует включить обмотку 17, ротор 2 развернется еще на один шаг и т.д. Для изменения направления вращения нужно изменить порядок коммутации фаз двигателя на обратный. В соответствии с приведенным выше описанием двигатель работает в шаговом режиме с поочередной коммутацией фаз. Для управления двигателем можно использовать и другие системы коммутации фаз.
Магнитные потоки через магнитопроводящие кольца 5, 6, 7, 8, 9 и 10 с зубцами 11, 12, 13, 14, 15 и 16 проходит в радиальном и осевом направлениях, и поэтому выполнение магнитопроводящих колец 5, 6, 7, 8, 9 и 10 из магнитомягких композиционных материалов позволяет избежать потерь на вихревые токи при любых направлениях магнитных потоков.
При подаче в обмотки синусоидальных токов, смещенных по фазе на 2π/m, двигатель будет работать как синхронный - с равномерным вращением ротора и вала.
Если коммутировать фазы двигателя по сигналам датчика положения ротора, то двигатель будет работать как бесконтактный двигатель постоянного тока.
Предлагаемую электрическую машину можно использовать также и в режиме генератора.
В предлагаемой электрической машине рабочий магнитный поток, связанный с кольцевыми обмотками фаз, при тех же габаритах машины значительно увеличен. В прототипе магнитопроводящие кольца не имеют выступающих в осевом направлении зубцов и магнитный поток, связанный с каждой кольцевой обмоткой фаз создает, только та часть поверхности полюсов ротора, которая находится под зубцами магнитопроводящих колец. Поверхность полюсов ротора, находящаяся в зоне пазов магнитопроводящих колец и кольцевых обмоток, не создает магнитного потока, связанного с кольцевыми обмотками. Вследствие этого в прототипе используется менее половины общего магнитного потока полюсов ротора. Выполнение магнитопроводящих колец из магнитомягкого композиционного материала с зубцами, выступающими в осевом направлении, при этом соседние магнитопроводящие кольца, между которыми размещена кольцевая обмотка, должны располагаться так, чтобы их выступающие в осевом направлении зубцы были направлены встречно друг другу и проходили в пазах соседнего магнитопроводящего кольца позволяет увеличить при тех же самых размерах ротора более чем в два раза магнитный поток ротора, связанный с каждой кольцевой обмоткой фаз, и, следовательно, создать в тех же габаритах электрическую машину с повышенной мощностью, либо уменьшить массу и габариты электрической машины одинаковой мощности с прототипом.
Кроме того, можно повысить технологичность изготовления электрической машины заполнив промежутки между зубцами соседних магнитопроводящих колец одной и той же фазы немагнитным компаундом, в результате чего магнитопроводящие кольца одной и той же фазы объединяются в единый конструктивный элемент, имеющий форму каркаса катушки, на который наматывается кольцевая обмотка фазы и тороидальный магнитопровод.
название | год | авторы | номер документа |
---|---|---|---|
ЭЛЕКТРИЧЕСКАЯ МАШИНА | 2004 |
|
RU2279174C1 |
ЭЛЕКТРИЧЕСКАЯ МАШИНА | 2003 |
|
RU2241298C1 |
НИЗКООБОРОТНЫЙ АСИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ | 2010 |
|
RU2412518C1 |
НИЗКООБОРОТНЫЙ АСИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ | 2003 |
|
RU2283527C2 |
МНОГОСЛОЙНЫЙ ТОРЦЕВОЙ МОМЕНТНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ | 2008 |
|
RU2356158C1 |
ЭЛЕКТРИЧЕСКАЯ МАШИНА | 2005 |
|
RU2306657C1 |
МНОГОСЛОЙНЫЙ ТОРЦЕВОЙ МОМЕНТНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ | 2003 |
|
RU2251784C1 |
ТОРЦЕВОЙ МОМЕНТНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ | 2003 |
|
RU2256276C2 |
ЭЛЕКТРИЧЕСКАЯ МАШИНА | 1990 |
|
RU2037940C1 |
УНИПОЛЯРНЫЙ ГЕНЕРАТОР ПОСТОЯННОГО ТОКА | 2014 |
|
RU2546970C1 |
Изобретение относится к области электротехники, в частности - к электрическим машинам и электроприводу. Сущность изобретения состоит в следующем. Электрическая машина содержит ротор из магнитопроводящего материала с постоянными магнитами, полярность которых чередуется в тангенциальном направлении, и статор, у которого магнитопровод выполнен из магнитопроводящих колец с зубцами, число которых на каждом магнитопроводящем кольце в два раза меньше числа полюсов ротора, а обмотки якоря выполнены кольцевыми по числу фаз, распределенными в аксиальном направлении и размещенными между двумя соседними магнитопроводящими кольцами, при этом зубцы магнитопроводящих колец, между которыми размещена кольцевая обмотка, смещены по углу на угол, равный угловой ширине полюса ротора, а угловое положение зубцов магнитопроводящих колец различных фаз отличается на угол 2π/m эл. радиан, где m - число фаз. При этом, согласно настоящему изобретению, магнитопроводящие кольца электрической машины выполнены из магнитомягкого композиционного материала с зубцами, выступающими в осевом направлении, и зубцы магнитопроводящих колец, между которыми размещена кольцевая обмотка, направлены встречно друг другу в пазах соседнего магнитопроводящего кольца, при этом между двумя соседними магнитопроводящими кольцами данной фазы расположены тороидальные магнитопроводы для замыкания магнитного потока фазы. Технический результат - повышение мощности при одновременном уменьшении массы и габаритов электрической машины. 1 з.п. ф-лы, 5 ил.
ЭЛЕКТРИЧЕСКАЯ МАШИНА | 2003 |
|
RU2241298C1 |
ЭЛЕКТРИЧЕСКАЯ МАШИНА | 1990 |
|
RU2037940C1 |
ИНДУКТОРНЫЙ ОДНОФАЗНЫЙ ГЕНЕРАТОР | 1992 |
|
RU2027285C1 |
Электрическая машина с разделенными магнитопроводами фаз | 1988 |
|
SU1580492A1 |
Приспособление для удаления мусора из поддувала топки паровозных котлов | 1929 |
|
SU14860A1 |
DE 4400443 С1, 03.11.1994 | |||
DE 3927454 А1, 21.02.1991 | |||
WO 9630991 А1, 03.10.1996. |
Авторы
Даты
2009-02-27—Публикация
2007-06-18—Подача