Изобретение относится к двигателестроению и может быть использовано для создания топливной смеси как в карбюраторных двигателях, так и в двигателях с впрыском.
Известен способ работы двигателя внутреннего сгорания на жидком углеводородном топливе [1].
Недостатком данного способа является то, что углеводороды, выбрасываемые такими двигателями, под действием солнечного света вступают в реакцию с оксидами азота, в результате чего образуются перекиси, альдегиды, кислоты и др., наносящие вред здоровью человека. Вдыхание паров углеводородов, содержащихся в несгоревшем топливе или продуктах его крекинга, также весьма вредно. Как правило, значительный выброс двигателем канцерогенных веществ связан с общим ухудшением качества горения.
Прототипом является способ работы двигателя внутреннего сгорания на пылевидном топливе [2].
Недостатками данного способа являются:
- большая энергия, требуемая для воспламенения смеси, поскольку между горючими пылинками находится негорючая среда, и в результате этого возрастают потери тепла, вырабатываемого источником зажигания. Поэтому для компенсации этих потерь и развития реакции горения требуется значительно большая энергия, чем, например, для воспламенения жидкого топлива;
- ненадежное воспламенение смеси, особенно при низких температурах, обусловленное возрастающими теплопотерями в окружающую среду. При этом возможна также неустойчивая (с пропусками) работа двигателя;
- большие затраты энергии для формирования горючей пыли, требуемые для ее измельчения до одинаковых требуемых размеров. Это, в свою очередь, приводит к удорожанию применяемого топлива;
- сравнительно большое время сгорания топлива, определяемое в основном продолжительностью нагрева частиц до температуры воспламенения. Это ограничивает применение пылевидного топлива в быстроходных двигателях;
- ограниченный диапазон регулирования режимов работы двигателя, обусловленный, во-первых, большим временем сгорания (верхний предел частоты вращении коленчатого вала) и достаточно высокой минимальной концентрацией пылинок в смеси (нижний предел частоты вращения вала). Во-вторых, при определенной концентрации, например, угольной пыли сгорание происходит взрывом, что вредит нормальной работе двигателя. Отсюда возникают ограничения по мощности работы двигателя;
- увеличение нагара в камере сгорания при впуске смеси, поскольку пылинки успевают нагреться до пластичного состояния и прилипнуть к разогретым поверхностям камеры.
Задачей изобретения является устранение указанных недостатков, а именно проведение более качественного процесса термохимического преобразования энергии.
Задача решается тем, что в способе работы двигателя внутреннего сгорания, использующем термохимический процесс преобразования рабочего тела - смеси и включающем образование смеси пылевидного топлива с воздухом, ее воспламенение в камере сгорания в конце такта сжатия, сгорание, сопровождающееся повышением температуры и давления, и последующий отвод тепла, в смесь вводят компонент жидкого топлива.
Введение жидкого компонента осуществляют путем его перемешивания с пылевидным топливом до образования суспензии. Пылевидным топливом предварительно производят адсорбцию жидкого окислителя. Пылевидным топливом предварительно производят адсорбцию газообразного окислителя.
Из уровня техники не выявлены решения, имеющие признаки, совпадающие с отличительными признаками заявленного изобретения и оказывающие такое же, как и они, влияние на технический результат, состоящий в улучшении процесса термохимического преобразования энергии.
Сущность изобретения отражают операции:
- введение в горючую смесь компонента жидкого топлива;
- введение жидкого компонента в смесь путем его перемешивания с пылевидным топливом до образования суспензии;
- предварительное проведение пылевидным топливом адсорбции жидкого окислителя;
- предварительное проведение пылевидным топливом адсорбции газообразного окислителя.
Указанные операции позволяют достичь следующих преимуществ по сравнению с прототипом.
Введение в горючую смесь компонента жидкого топлива позволяет топливной смеси быстрее воспламеняться, при этом сокращается время сгорания, что дает возможность увеличить при необходимости частоту вращения коленчатого вала.
Введение жидкого компонента в смесь путем его перемешивания с пылевидным топливом до образования суспензии способствует образованию на поверхности твердых частиц топливной пленки при распылении смеси в камере сгорания. Сжигание такой топливной смеси в камере сгорания двигателя имеет ряд особенностей, в частности по мере развития процесса горения и расходования кислорода отдельные объемы смеси могут оказаться в зоне продуктов реакции. При применении традиционного жидкого топлива указанные забалластированные углекислотой объемы не сгорают, если не смешаются с остатками неизрасходованного кислорода. В случае использования смеси жидкого и твердого топлива, например угля, картина изменяется. В этих условиях, когда кислород не в состоянии достигать в этих условиях углеродной поверхности, носителем кислорода становится углекислота. Углекислота диффундирует в угольную частицу и в области высоких температур может с высокой скоростью восстанавливаться углеродной поверхностью, образуя при этом горючий газ - окись углерода. Завершают процесс имеющиеся в продуктах сгорания пары воды, обеспечивая реакцию конверсии окиси углерода в двуокись.
Если на первом этапе скорость горения будет лимитироваться испарением жидкости и диффузионным смешением образующихся паров с окружающим воздухом, то на втором этапе (реагирование угольной частицы) процесс горения практически не будет тормозиться физической стадией и станет определяться только скоростью самой химической реакции, поскольку окружающая частицу среда уже будет разогрета. Следует также заметить, что уголь имеет большую энергоемкость единицы объема по сравнению с жидкими топливами и газами.
Покрывающая угольную частицу топливная пленка не позволяет ей перейти в пластичное состояние до начала воспламенения, что способствует снижению нагарообразования.
Таким образом, сгорание угольной частицы происходит преимущественно в кинетической области, что обуславливает высокую реакционную способность топлива и способствует сгоранию топливного заряда при мало изменяющемся объеме камеры сгорания. В результате этого КПД становится более высоким и появляется возможность использования этого топлива в быстроходных двигателях. Кроме того, повышается интенсивность процесса горения, позволяющая сгорать тяжелым фракциям в жидкой части топлива, которые, как правило, не успевают полностью сгореть в обычном случае.
Предварительное проведение пылевидным топливом адсорбции жидкого или газообразного окислителя позволяет еще больше сократить время сгорания и ввести при необходимости в камеру сгорания больше топлива, что повысит мощность двигателя. Угольные частички обладают пористой губчатой структурой и являются хорошими адсорбентами. Благодаря химической адсорбции количество тепла, выделяющегося в результате реакция углерода с кислородом при высоких температурах и давлениях, может превышать тепловой эффект этой реакции в обычных условиях, что также повышает КПД двигателя.
В качестве жидкого окислителя может быть использован фэтерол, представляющий собой смесь метилтретбутилового эфира и третбутилового спирта (см. ИР №2,1995, с.12).
Изобретение поясняется чертежом.
На чертеже изображена схема испарения жидкого топлива с угольной частицы.
Угольная частица 1 покрыта пленкой жидкого топлива 2, которое до момента начала испарения имеет исходную поверхность 3. По мере испарения в высокотемпературной среде 4 жидкого топлива образовавшиеся пары 5 имеют с последним поверхность 6 раздела.
Способ реализуют следующим образом.
Во время всасывания в цилиндр твердого топлива с воздухом вводят в эту смесь компонент жидкого топлива, в результате чего улучшается воспламенение получившегося топливного заряда.
Возможно приготовление указанного топливного заряда до момента такта всасывания. Для этого осуществляют перемешивание жидкого компонента и твердого пылевидного топлива до образования суспензии. Полученную суспензию помещают затем в камеру сгорания двигателя, например, путем распыления. При этом образуются мельчайшие частицы, внутри которых находится угольная частица 1, покрытая пленкой жидкого топлива 2 с исходной поверхностью 3. При испарении топлива в высокотемпературной среде 4 камеры сгорания образуются его пары 5, которые воспламеняются. В процессе продвижения поверхности 6 раздела к угольной частице количество продуцируемого пара увеличивается, в результате чего, в конечном счете, возрастает температура среды вокруг частицы 1 и ее прогрев. Затем угольная частица воспламеняется и сгорает практически полностью преимущественно в кинетической области.
При необходимости предварительно производят пылевидным топливом адсорбцию жидкого или газообразного окислителя. В результате этого улучшается сгорание смеси, обогащенной топливом.
Внедрение изобретения позволит улучшить процесс сгорания в двигателе, уменьшить нагарообразование и снизить токсичность отработавших газов за счет частичной замены углеводородного топлива другим твердым, например углем, не имеющим в своем составе углеводородных компонентов.
Кроме того, более высокий (по сравнению с жидким топливом) коэффициент теплопроводности такого смесевого топлива способствует уменьшению склонности двигателя к детонации, что дает возможность применять жидкое топливо с меньшим октановым числом.
Источники информации
1. Воинов А.Н. Процессы сгорания в быстроходных поршневых двигателях. - М.: Машиностроение, 1965. - Аналог.
2. Авт. св. СССР №1137226, кл. F02В, 45/02, 1985. - Прототип.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 1997 |
|
RU2166109C2 |
СПОСОБ РАБОТЫ ПОРШНЕВОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2012 |
|
RU2528800C2 |
СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2019 |
|
RU2744262C1 |
СПОСОБ СЖИГАНИЯ ЖИДКОГО ТОПЛИВА | 2010 |
|
RU2421659C1 |
СПОСОБ ПРОГРЕВА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ НА ХОЛОСТОМ ХОДУ | 2023 |
|
RU2797813C1 |
УСТРОЙСТВО ДЛЯ ПОДГОТОВКИ ТОПЛИВА | 1991 |
|
RU2044916C1 |
СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2023 |
|
RU2821672C1 |
СПОСОБ РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2020 |
|
RU2763976C1 |
ПОРШНЕВОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ | 2014 |
|
RU2561805C1 |
СПОСОБ РАБОТЫ ПАРОВОГО ЛОКОМОТИВА НА ТВЕРДОМ ТОПЛИВЕ | 2009 |
|
RU2430846C2 |
Изобретение относится к двигателестроению и может быть использовано для создания топливной смеси как в карбюраторных двигателях, так и в двигателях с впрыском. Способ работы двигателя внутреннего сгорания использует термохимический процесс преобразования рабочего тела - смеси и включает образование смеси пылевидного топлива с окислителем, ее воспламенение в камере сгорания в конце такта сжатия, сгорание, сопровождающееся повышением температуры и давления, и последующий отвод тепла. В смесь вводят компонент жидкого топлива путем его перемешивания с пылевидным топливом до образования суспензии, причем пылевидным топливом предварительно производят адсорбцию жидкого или газообразного окислителя. Технический результат, достигаемый при использовании данного способа, заключается в проведении более качественного процесса термохимического преобразования энергии. 1 з.п. ф-лы, 1 ил.
JP 4148019 А, 21.05.1992 | |||
Штамп для растяжки кольцевых заготовок | 1975 |
|
SU547256A1 |
DE 3145073 А1, 26.05.1983 | |||
Автоматический огнетушитель | 0 |
|
SU92A1 |
US 4558664 А, 17.12.1985 | |||
РОТОРНЫЙ ДВИГАТЕЛЬ КАШЕВАРОВА "РДК-17" И СПОСОБ ЕГО РАБОТЫ | 1997 |
|
RU2121066C1 |
Авторы
Даты
2009-03-20—Публикация
2006-03-15—Подача