СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКОГО ПОКРЫТИЯ Российский патент 2009 года по МПК G01B15/02 

Описание патента на изобретение RU2350901C1

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ, реализуемый емкостным датчиком толщины покрытия (см. И.Чеховской. Контроль толщины эмали на кузове. «Радио» №1, 2004, стр.47), при котором о толщине покрытия эмали на кузове легкового автомобиля судят по изменению емкости двух последовательно включенных конденсаторов, соединенных с измерителем емкости.

Недостатком этого известного способа является контактность датчика с контролируемой поверхностью и погрешность измерения из-за температурных влияний на емкость конденсаторов.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения толщины диэлектрического слоя (см. В.А.Викторов, Б.В.Лункин, А.С.Совлуков. Радиоволновые измерения параметров технологических процессов, 1989, стр.50). Этот способ, реализуемый указанным устройством, основан на зондировании диэлектрического слоя двумя сигналами с умноженной частотой одного из них и сравнении фаз отраженных от поверхности слоя сигналов с умноженной частотой одного из них. В этой разработке по выходному сигналу фазового детектора судят о толщине диэлектрического слоя.

Недостатком данного фазового способа измерения следует считать сложность определения толщины, связанную с образованием сигналов с умноженной частотой одного из них как при зондировании, так и при сравнении фаз отраженных сигналов.

Задачей заявляемого технического решения является упрощение процедуры измерения толщины диэлектрического покрытия.

Поставленная задача решается тем, что в способе определения толщины диэлектрического покрытия, нанесенного на металлическую основу, использующем электромагнитные волны для зондирования диэлектрического покрытия и прием отраженных от границы раздела сред «воздух-диэлектрическое покрытие» волн, зондирование контролируемого покрытия осуществляют под острым углом, дополнительно принимают отраженные от границы раздела сред «диэлектрическое покрытие-металлическая основа» волны, фиксируют максимум интенсивности отраженных от указанных границ раздела сред «воздух-диэлектрическое покрытие» и «диэлектрическое покрытие-металлическая основа» волн и в момент достижения этого максимума интенсивности толщину диэлектрического покрытия d определяют по формуле:

где n - целое положительное число, λ - длина зондирующей волны, Q - угол падения зондирующей волны.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при зондировании контролируемого диэлектрического покрытия под острым углом по максимальной величине интенсивности отраженных от границ раздела сред «воздух-диэлектрическое покрытие» и «диэлектрическое покрытие-металлическая основа» волн определяют толщину диэлектрического покрытия, нанесенного на металлическую основу.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить поставленную задачу определения толщины диэлектрического покрытия на основе фиксирования и оценки максимума интенсивности отраженных от двух границ раздела сред волн с желаемым техническим результатом, т.е. упрощением процедур образования зондирующих и сравнения отраженных сигналов.

На чертеже приведена функциональная схема устройства, реализующего предлагаемый способ.

Устройство, реализующее данное техническое решение, содержит микроволновой генератор электромагнитных колебаний 1, подключенную к его выходу передающую рупорную антенну 2, осуществляющую зондирование слоя диэлектрического покрытия 3, приемную рупорную антенну 4, амплитудный детектор 5, соединенный выходом со входом индикатора 6. На чертеже цифрой 7 обозначена металлическая основа.

Суть предлагаемого способа заключается в следующем. При зондировании диэлектрического покрытия, нанесенного на металлическую основу, электромагнитными волнами могут иметь место отражения волн от первой границы раздела сред «воздух-диэлектрическое покрытие» и второй границы раздела сред «диэлектрическое покрытие-металлическая основа». При этом согласно условию Брэгга-Вульфа (см. Физическая энциклопедия. М.: Советская энциклопедия, 1988, стр.231) максимумы интенсивности отраженных в данном случае волн от указанных выше двух границ раздела сред возникают только в тех направлениях, в которых отраженные от этих границ волны имеют одинаковые фазы. Это возможно, если разность хода между отраженными от двух границ раздела сред волнами, равная 2dsinQ, кратна целому числу длины волны А, т.е. когда справедливо соотношение

где d - расстояние между границами раздела двух сред, Q - угол падения (скольжения) зондирующей волны, n - целое положительное число.

Вышеприведенное рассуждение дает возможность использовать условие Брэгга-Вульфа для определения толщины диэлектрического покрытия при его зондировании электромагнитными колебаниями. В соответствии с этим в рассматриваемом случае с определенной точностью можно принимать расстояние d за толщину диэлектрического покрытия. Тогда решение уравнения (1) по d позволит вычислить толщину d по выражению, соответствующему максимуму интенсивности отраженных от двух границ раздела сред волн:

Из полученного выражения видно, что при известных значениях n, λ и Q можно определить толщину диэлектрического покрытия.

Из анализа соотношения (1) вытекает, что изменение d (толщины диэлектрического покрытия) нарушает справедливость этого соотношения, т.е. обуславливает уменьшение интенсивности отраженных волн. Поэтому необходимо следить за максимумом интенсивности при изменении толщины диэлектрического покрытия.

В рассматриваемом случае наиболее эффективным по обеспечению максимума интенсивности отраженных волн при изменении толщины d может оказаться параметр Q.

Проиллюстрируем поведение d на числовом примере, например, при двух значениях угла Q=10° и Q=80° (значения острого угла). Пусть λ=8 мм и n=1. Тогда при Q=10° d=23 мм, а при Q=80° d=4 мм. Отсюда следует, что увеличение толщины диэлектрического покрытия сопряжено с уменьшением острого угла и наоборот. Следовательно, при изменении толщины d варьированием острого угла падения зондирующей волны и угла приема отраженных волн можно обеспечить слежение за максимумом интенсивности отраженных волн. Таким образом, при достижении максимума интенсивности отраженных волн по формуле (2) можно определить толщину данного покрытия.

Устройство, реализующее предлагаемый способ, работает следующим образом. Электромагнитные волны с выхода микроволнового генератора электромагнитных колебаний 1 поступают в передающую рупорную антенну 2 с возможностью изменения угла падения зондирующей волны. После этого электромагнитные волны под острым углом направляются в сторону диэлектрического покрытия 3, нанесенного на металлическую основу 7. Отраженные волны от первой границы раздела сред «воздух-диэлектрическое покрытие» и второй границы раздела сред «диэлектрическое покрытие-металлическая основа» улавливаются приемной рупорной антенной 4 с возможностью изменения угла приема волн. Далее результирующий сигнал отраженных от двух границ раздела сред волн с приемной антенны поступает на вход амплитудного детектора 5. Здесь возникает продетектированный сигнал в зависимости от фазовых соотношений указанных выше отраженных волн. При совпадении фаз отраженных от двух границ раздела сред волн на выходе амплитудного детектора формируется максимум интенсивности этих отраженных волн, который после отображения в индикаторе 6 используется для вычисления толщины диэлектрического покрытия.

Таким образом, согласно предлагаемому способу на основе фиксирования и оценки максимума интенсивности отраженных волн от двух границ раздела сред можно обеспечить упрощение процедуры измерения толщины диэлектрического покрытия, нанесенного на металлическую основу.

Похожие патенты RU2350901C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКОГО ПОКРЫТИЯ 2007
  • Ахобадзе Гурам Николаевич
RU2350899C1
Способ контроля расположения арматуры в железобетонном изделии 2019
  • Ахобадзе Гурами Николаевич
RU2736105C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКОГО ПОКРЫТИЯ 2004
  • Ахобадзе Г.Н.
RU2262658C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКОГО ПОКРЫТИЯ 2007
  • Ахобадзе Гурам Николаевич
RU2332658C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ГРАНУЛОМЕТРИЧЕСКОГО СОСТАВА КУСКОВЫХ МАТЕРИАЛОВ 2009
  • Ахобадзе Гурам Николаевич
RU2404426C1
РАДИОЛОКАЦИОННАЯ АНТЕННА С УМЕНЬШЕННОЙ ЭФФЕКТИВНОЙ ПЛОЩАДЬЮ РАССЕЯНИЯ 2009
  • Ковалев Сергей Владимирович
  • Король Олег Владимирович
  • Нестеров Сергей Михайлович
  • Подъячев Виталий Владимирович
  • Скородумов Иван Алексеевич
RU2400882C1
РАДИОЛОКАЦИОННАЯ АНТЕННА С УМЕНЬШЕННОЙ ЭФФЕКТИВНОЙ ПЛОЩАДЬЮ РАССЕЯНИЯ 2015
  • Грибков Алексей Сергеевич
  • Грибков Виталий Сергеевич
  • Громов Андрей Николаевич
  • Ковалев Сергей Владимирович
  • Нестеров Сергей Михайлович
  • Олейник Вячеслав Методиевич
  • Скородумов Иван Алексеевич
RU2589250C1
СПОСОБ РАДИОЛОКАЦИОННОГО ЗОНДИРОВАНИЯ И УСТРОЙСТВО "ДИФФЕРЕНЦИАЛЬНЫЙ РАДАР" ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Лозовский Леонид Абрамович
  • Дядькин И.Г.(Ru)
  • Мелентьев Ян Павлович
  • Шершаков Владимир Николаевич
  • Хохлушкина Ф.А.(Ru)
RU2148842C1
СПОСОБ ИДЕНТИФИКАЦИИ ДИЭЛЕКТРИЧЕСКИХ ОБЪЕКТОВ 2002
  • Кузнецов А.В.
  • Аверьянов В.П.
RU2230342C2
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКОГО ПОКРЫТИЯ 2004
  • Ахобадзе Г.Н.
RU2260790C1

Реферат патента 2009 года СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКОГО ПОКРЫТИЯ

Предлагаемое изобретение относится к области измерительной техники. Задачей изобретения является упрощение процедуры измерения толщины диэлектрического покрытия. Поставленная задача решается тем, что, используя электромагнитные волны для зондирования диэлектрического покрытия и приема отраженных от границы раздела сред «воздух-диэлектрическое покрытие» волн, зондирование контролируемого покрытия осуществляют под острым углом, дополнительно принимают отраженные от границы раздела сред «диэлектрическое покрытие-металлическая основа» волны, фиксируют максимум интенсивности отраженных от указанных границ раздела «воздух-диэлектрическое покрытие» и «диэлектрическое покрытие-металлическая основа» волн путем варьирования острого угла падения зондирующей волны и угла приема отраженных волн, а в момент достижения этого максимума интенсивности толщину диэлектрического покрытия d определяют по формуле:

где n - целое положительное число, λ - длина зондирующей волны, Q - угол падения зондирующей волны. 1 ил.

Формула изобретения RU 2 350 901 C1

Способ определения толщины диэлектрического покрытия, нанесенного на металлическую основу, при котором зондируют диэлектрическое покрытие электромагнитными волнами и принимают отраженные от границы раздела сред «воздух - диэлектрическое покрытие» волны, отличающийся тем, что зондирование контролируемого покрытия осуществляют под острым углом к нему, дополнительно принимают отраженные от границы раздела сред «диэлектрическое покрытие - металлическая основа» волны, фиксируют максимум интенсивности отраженных от указанных границ раздела сред «воздух - диэлектрическое покрытие» и «диэлектрическое покрытие - металлическая основа» волн путем варьирования острого угла падения зондирующей волны и угла приема отраженных волн и в момент достижения этого максимума интенсивности толщину диэлектрического покрытия d определяют по формуле

где n - целое положительное число, λ - длина зондирующей волны, Q - угол падения зондирующей волны.

Документы, цитированные в отчете о поиске Патент 2009 года RU2350901C1

Устройство для контроля толщины диэлектрического покрытия на диэлектрической основе 1984
  • Скрипник Юрий Алексеевич
  • Дыков Анатолий Николаевич
  • Свиридов Николай Михайлович
SU1186935A1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА 2003
  • Ахобадзе Г.Н.
RU2240504C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКОГО ПОКРЫТИЯ 2004
  • Ахобадзе Г.Н.
RU2260790C1
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ СТРУКТУРЫ "МЕТАЛЛИЧЕСКАЯ ПЛЕНКА - ПОЛУПРОВОДНИКОВАЯ ИЛИ ДИЭЛЕКТРИЧЕСКАЯ ПОДЛОЖКА" 2006
  • Усанов Дмитрий Александрович
  • Скрипаль Александр Владимирович
  • Абрамов Антон Валерьевич
  • Боголюбов Антон Сергеевич
RU2326368C1

RU 2 350 901 C1

Авторы

Ахобадзе Гурам Николаевич

Даты

2009-03-27Публикация

2007-12-10Подача