СПОСОБ ОПРЕДЕЛЕНИЯ СТЕПЕНИ ОПАСНОСТИ ЦУНАМИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2009 года по МПК G01V9/00 

Описание патента на изобретение RU2350986C1

Предлагаемый способ и устройство относятся к области сейсмологии и могут быть использованы в оперативной службе предупреждения о волнах цунами, возникающих вследствие резкого подъема или опускания значительных водных масс океана.

Известны способы и устройства обнаружения волн цунами (авт.свид. СССР №№157229, 914702, 1584585, 1163287, 1198792; патенты РФ №№2034312, 2066468, 2097792, 2124744, 2147060, 2156988, 2238574, 2288487; патенты США №№4214288, 4587859, 4691661, 5124915, 5556229; патенты Великобритании №№1163173, 2183038; Соловьев СЛ., Бурымская Р.И. «Оценка эффективности новых признаков цунамигенности землетрясений». Изв. АН СССР, серия «Физика Земли», 1981, №8 и другие).

Из известных способов и устройств обнаружения волн цунами наиболее близкими к предлагаемым являются «Способ определения степени опасности цунами и устройство для его осуществления» (патент РФ №2288487, G01V 9/00, 2005), которые и выбраны в качестве прототипов.

Известные способ и устройство обеспечивают повышение достоверности определения степени опасности цунами путем использования сложных сигналов с фазовой манипуляцией для передачи тревожной информации о грозном стихийном бедствии.

Однако в условиях организованных и непреднамеренных помех, многолучевого распространения радиоволн надежная передача тревожной информации о грозном стихийном бедствии вызывает определенные трудности.

Наличие многолучевого характера распространения радиоволн приводит к искажению принимаемых ФМн-сигналов, что затрудняет прием и снижает достоверность передачи тревожной информации и радиобуев на наземную станцию через ИС3-ретранслятор.

В определенной мере проблема обеспечения высокой достоверности передачи тревожной информации с радиобуев на наземную станцию через ИС3-ретранслятор может быть решена применением метода расширения спектра используемых ФМн-сигналов путем псевдослучайной перестройки рабочей частоты (ППРЧ).

Технической задачей изобретения является повышение помехоустойчивости, достоверности и скрытности передачи тревожной информации с радиобуев на наземную станцию через ИС3-ретранслятор путем псевдослучайной перестройки рабочей частоты используемых сложных сигналов с фазовой манипуляцией.

Поставленная задача решается тем, что согласно способу определения опасности цунами, включающему размещение в прибрежной зоне на глубине более 100 м групп устройств регистрации, соединение их трактом связи с наземными станциями приема и обработки сигналов, установление дополнительной группы устройств регистрации на расстоянии 2-4 тысяч км от берега, размещение группы устройств в прибрежной зоне на расстоянии/от берега, определяемом по формуле

где τкр - нормативное время на защиту охраняемого района;

g - ускорение свободного падения;

Н - средняя глубина моря между берегом и устройством,

и выполнение в виде модели шельфа у береговой линии охраняемого района, при этом устройство закрепляют на дне моря тросовыми растяжками, наклоненными под углом 30-60° к горизонту и соединенными с корпусом устройства по крайней мере в трех равноудаленных друг от друга точках, по сигналам дальних устройств регистрации устанавливают факт возникновения и направление распространения волны цунами, а по сигналам ближних устройств регистрации определяют степень опасности волны цунами для охраняемого района, на радиобуе формируют высокочастотное колебание, манипулируют его по фазе модулирующим кодом, содержащим сведения о направлении распространения и степени опасности волны цунами для охраняемого района, сформированный сложный сигнал с фазовой манипуляцией усиливают по мощности и излучают в эфир с интервалом времени, определяемым степенью опасности волны цунами для охраняемого района, на наземной станции приема и обработки сигналов принимаемый сложный сигнал с фазовой манипуляцией преобразуют по частоте, выделяют сложный сигнал с фазовой манипуляцией на промежуточной частоте, удваивают его фазу, измеряют ширину спектра принимаемого сигнала с фазовой манипуляцией промежуточной частоты и его второй гармоники, сравнивают их между собой и в случае значительного различия осуществляют синхронное детектирование принимаемого сигнала с фазовой манипуляцией промежуточной частоты, выделяют низкочастотное напряжение, пропорциональное модулирующему коду, и регистрируют его, при этом опорное напряжение, необходимое для синхронного детектирования принимаемого сигнала с фазовой манипуляцией промежуточной частоты, формируют путем выделения второй гармоники принимаемого сигнала с фазовой манипуляцией промежуточной частоты, деления его фазы на два и выделения гармонического напряжения промежуточной частоты, отличается от ближайшего аналога тем, что на радиобуе формируют сетку частот высокочастотных колебаний, а на наземной станции приема и обработки формируют сетку частот гетеродина, сформированные сетки частот согласованно переключают последовательно во времени по закону псевдослучайной последовательности, между последовательными переключениями используют только одну несущую частоту высокочастотного колебания и соответствующую частоту гетеродина и формируют временный интервал tc, который характеризует собой время работы на одной частоте и который содержит m информационных символов длительностью τэ tc=mτэ, на каждом временном интервале tc на радиобуе осуществляют манипуляцию высокочастотного колебания каждой несущей частоты по фазе, а на наземной станции приема и обработки сигналов - преобразование по частоте с использованием сетки частот гетеродина и синхронное детектирование принимаемого сигнала с фазовой манипуляцией промежуточной частоты.

Поставленная задача решается тем, что устройство для определения степени опасности цунами, содержащее наземную станцию приема и обработки сигналов, спутник связи-ретранслятор, радиобуй и устройств регистрации, включающее корпус с крышкой и днищем, и подводный кабель связи с наземной станцией, при этом крышка выполнена куполообразной, а днище - в виде усеченного конуса, входящего меньшим основанием под куполообразную крышку и соединено с ней ребрами жесткости, при этом последние разделяют внутренний объем устройства по крайней мере на четыре сектора, а большее основание конуса образует с крышкой кольцевую прорезь, в которой в каждом из секторов установлены анемометры, а верхняя часть секторов и сбросной шахты под куполообразной крышкой заполнена газообразным агентом, радиобуй выполнен в виде мультивибратора, передатчика и последовательно подключенных к выходам анемометров элемента ИЛИ и трех каналов обработки, каждый из которых состоит из последовательно включенных порогового блока и реле, передатчик выполнен в виде последовательно включенных фазового манипулятора, второй вход которого соединен с выходом генератора модулирующего кода, телеграфного ключа, усилителя мощности и передающей антенны, при этом передатчик и мультивибратор через замыкающий контакт первого реле подключены к источнику питания, замыкающий контакт второго реле включен последовательно с резистором в одно из плеч мультивибратора, замыкающие контакты третьего реле и реле мультивибратора подключены параллельно телеграфному ключу передатчика, наземная станция приема и обработки сигналов выполнена в виде последовательно включенных приемной антенны, смесителя, усилителя промежуточной частоты, удвоителя фазы, второго анализатора спектра, блока сравнения, второй вход которого через первый анализатор спектра соединен с выходом усилителя промежуточной частоты, порогового блока, второй вход которого через линию задержки соединен с его выходом, ключа, второй вход которого соединен с выходом усилителя промежуточной частоты, фазового детектора и блока регистрации, при этом к выходу удвоителя фазы последовательно подключены первый узкополосный фильтр, делитель фазы на два и второй узкополосный фильтр, выход которого соединен с вторым входом фазового детектора, к выходу порогового блока подключен звуковой сигнализатор, отличается от ближайшего аналога тем, что передатчик радиобуя снабжен первым синхронизатором, первым генератором псевдослучайной последовательности и синтезатором несущих частот, причем к выходу первого синхронизатора последовательно подключены первый генератор псевдослучайной последовательности и синтезатор несущих частот, выход которого соединен с первым входом фазового манипулятора, а наземная станция приема и обработки сигналов снабжена вторым синхронизатором, вторым генератором псевдослучайной последовательности и синтезатором частот гетеродина, причем к выходу второго синхронизатора последовательно подключены второй генератор псевдослучайной последовательности и синтезатор частот гетеродина, выход которого соединен с вторым входом смесителя.

На фиг.1 представлена схема устройства регистрации в разрезе (вид сбоку), на фиг.2 - разрез А-А на фиг.1 (вид сверху), на фиг.3 изображена структурная схема радиобуя, на фиг.4 изображена структурная схема наземной станции приема и обработки сигналов, на фиг.5 представлены временные диаграммы, поясняющие работу устройства определения опасности цунами, на фиг.6 приведен фрагмент частотно-временной матрицы используемых сигналов с псевдослучайной перестройкой рабочей частоты (ППРЧ).

Устройство регистрации включает корпус 1 с куполообразной крышкой 2 и днищем 3 в виде усеченного конуса, большее основание 4 которого равно диаметру крышки 2, а меньшим основанием 5 днище 3 входит под купол крышки 2 и соединено с нею ребрами жесткости 6, скрепленными и со сбросной шахтой 7, закрепленной в меньшем основании 5 днища 3. Вместе со вспомогательной связью 8 ребра жесткости 6 придают необходимую прочность корпусу 1. Ребра жесткости 6 разделяют внутренний объем корпуса 1 на не менее чем на четыре сектора 9 с наклонными днищами, сходящими к сбросной шахте 7. Во входных проемах 10 секторов 9, образующих сплошную кольцевую щель в корпусе 1, установлены анемометры 11, соединенные подводным кабелем связи 12 с радиобуем 13 спутниковой связи.

Верхняя часть секторов 9 и сбросной шахты 7 до уровня 14 заполнена газообразным агентом.

Устройство регистрации закреплено к якорям 15 на дне моря 16 тросовыми растяжками 17 так, что угол наклона их к горизонту составляет от 30 до 60°, а количество растяжек 17 - не менее трех с закреплением их через равные расстояния на дуге окружности корпуса 1. В указанном диапазоне наклона тросовые растяжки 17 обеспечивают стабилизацию устройства регистрации и необходимую надежность тросов при воздействии на устройство регистрации динамических возмущений от волны цунами. Заполнение купола крышки 2 газообразным агентом придает корпусу 1 положительную плавучесть, обеспечивая натяжение тросовых растяжек 17, и создает искусственный шельф для модулирования волны цунами: имеется наклон дна сектора 9 и граница раздела "вода-воздух", т.е. разрыв сплошности жидкой среды.

Радиобуй 13 выполнен в виде мультивибратора 26, передатчика 29 и последовательно подключенных к выходам анемометров 11 элемента ИЛИ 18 и трех каналов обработки, каждый из которых состоит из последовательно включенных первого 19 (второго 20, третьего 21) порогового блока и первого 22 (второго 23, третьего 24) реле, первого синхронизатора 55, первого генератора 56 псевдослучайной последовательности (ПСП), синхронизатора 30 несущих частот.

Передатчик 29 выполнен в виде последовательно включенных фазового манипулятора 32, второй вход которого соединен с выходом генератора 31 модулирующего кода, телеграфного ключа 33, усилителя 34 мощности и передающей антенны 35.

При этом передатчик 29 и мультивибратор 26 через замыкающий контакт 22.1 первого реле 22 подключены к источнику питания 25. Замыкающий контакт 23.1 второго реле 23 включен последовательно с резистором 28 в одно из плеч мультивибратора 26. Замыкающие контакты 24.1 и 27.1 третьего реле 24 и реле 27 мультивибратора 26 подключены параллельно телеграфному ключу 33 передатчика 29.

Наземная станция приема и обработки сигналов выполнена в виде последовательно включенных приемной антенны 37, смесителя 39, усилителя 40 промежуточной частоты, удвоителя 43 фазы, второго анализатора 44 спектра, блока 45 сравнения, второй вход которого через первый анализатор 42 спектра соединен с выходом усилителя 40 промежуточной частоты, порогового блока 46, второй вход которого через линию 47 задержки соединен с его выходом, ключа 49, второй вход которого соединен с выходом усилителя 40 промежуточной частоты, фазового детектора 53 и блока 54 регистрации. К выходу удвоителя 43 фазы последовательно подключены первый узкополосный фильтр 50, делитель 51 фазы на два и второй узкополосный фильтр 52, выход которого соединен с вторым входом фазового детектора 53. К выходу порогового блока 46 подключен звуковой сигнализатор 48. Удвоитель 43 фазы, первый 42 и второй 44 анализаторы спектра, блок 45 сравнения, пороговый блок 46 и линия 47 задержки образуют обнаружитель 41 (селектор) ФМн-сигналов. Радиобуй 13 связан с наземной станцией приема и обработки радиоканалом через спутник связи - ретранслятор 36. К выходу второго синхронизатора 57 последовательно подключены второй генератор 58 псевдослучайной последовательности и синтезатор 38 частот гетеродина, выход которого соединен с вторым входом смесителя 39.

Физическая основа способа определения опасности цунами состоит в том, что волна цунами перемещается по всей глубине водного бассейна на большие расстояния при малой потере энергии со скоростями 800-1000 км/ч и на глубинах более 1000 м. При уменьшении глубины водоема скорость волны V падает по формуле Лагранжа:

где g - ускорение свободного падения;

Н - глубина водоема,

поэтому при подходе к берегу волны цунами вырастают от 1-2 м, в океане до десятков метров за счет торможения потока на наклонной плоскости и перехода кинетической энергии в потенциальную. Это позволяет смоделировать волну цунами на искусственном шельфе устройства регистрации, установленного на глубине более 100 м, где не сказывается влияние ветровых волн. Величину кинетической энергии волны определяют по скорости потока, замеренной анемометром, для чего необходим разрыв сплошности водной среды, что и выполнено в устройстве регистрации, частично заполненном газовым агентом. По скорости потока определяют его кинетическую энергию Ек

где - секундная масса потока.

Потери энергии в модели малы, поэтому можно приравнять величины кинетической Ек и потенциальной Еп энергией:

где h - высота волны в модели.

Тогда

hV2=2g,

т.е. высота волны пропорциональна скорости ее движения или величине электрического сигнала от анемометра, который можно отразить на блоке регистрации (самописце) наземной станции, отградуированном на высоту волны цунами.

Принцип оповещения о возникновении волн цунами основан на использовании сложного фазоманипулированного (ФМн) сигнала с ППРЧ, который излучается передатчиком радиобуя, переизлучается спутником связи - ретранслятором с сохранением фазовых соотношений, принимается и селектируется наземный станцией, детектируется и используется для регистрации и включения звукового сигнализатора. Причем характер звуковых сигналов свидетельствует о степени опасности волны цунами для охраняемого района, а зарегистрированный код свидетельствует о факте возникновения и направлении распространения волны цунами.

Способ определения опасности цунами реализуют следующим образом.

На площадке на дне моря 16, выбранной возможно дальше от охраняемой зоны в 2-4 тыс. км, чтобы иметь больше времени на принятие решения, устанавливают одно или несколько устройств регистрации, закрепляют его тросовыми растяжками 17 к якорям 15, соединяют подводный кабель связи 12 с радиобуем 13 на поверхности моря и ориентируют устройство по сторонам света известным способом. Например, возбуждают волну взрывом заряда ВВ или другим способом с известного направления, например с севера. Получив сигнал о приходе волны к входу 10 одного из секторов 9 от расположенного там анемометра 11, считают этот сектор 9 ориентированным на север, а остальные сектора ориентируют относительно него. Устройство готово к работе. Аналогично размещают группу ближних устройств на расчетном расстоянии l от берега:

где τкр - нормальное время на защиту охраняемого района.

Связь этих устройств возможна через радиобуй 13 спутниковой связи с наземной станцией.

При подходе возмущения водной среды от волны цунами в виде импульса давления к входу 10 в один из секторов 9 (фиг.1 и 2), ввиду наличия в нем границы раздела 14 жидкой и газовой сред с существенно различной плотностью, начинается движение воды в секторе по наклонному днищу 3 к сбросной шахте 7, и на разделе сред формируется модель волны цунами. При этом за счет значительной высоты ребер жесткости 6 каждый сектор 9 изолирован от соседнего, и волна моделируется в основном в конкретном секторе. За счет жесткости корпуса 1, обусловленной связью 8, днищем 3, ребрами жесткости 6 и куполообразной крышкой 2, соединенными в одну конструкцию, все устройство воздействует на тросы 17, закрепляющие устройство к якорям 15 и на дне моря 16, и они сохраняют устройство в заданном положении в пространстве путем гашения энергии упругими деформациями тросов 17. Движение водного потока вращает крыльчатку анемометра 11, и он вырабатывает электрический сигнал, пропорциональный скорости (следовательно, и энергии потока) воды. Этот сигнал через подводный кабель 12 поступает в радиобуй 13, где через элемент ИЛИ 18 поступает на вход трех каналов обработки, каждый из которых состоит из последовательно включенных порогового блока 19 (20, 21) и реле 22 (23, 24). Если величина электрического тока превышает первый пороговый уровень lпор1 в первом пороговом блоке 19, то последний формирует постоянное напряжение, которое поступает на первое реле 22. Последнее срабатывает и замыкает контакт 22.1, через который питание от источника 25 подается на передатчик 29 и мультивибратор 26.

После включения передатчика 29 синхронизатором 55 включается генератор 56 псевдослучайной последовательности (ПСП), который управляет переключением несущих частот синтезатора 30 несущих частот. На выходе последнего последовательно во времени формируется сетка высокочастотных колебаний различных рабочих частот (фиг.5, а):

где Ui, wi, ϕi, tc - амплитуда, несущая частота, начальная фаза и длительность i-го сигнала: i=1,2,...,М;

М - число частотных каналов;

τэ - длительность элементарных посылок (символов).

Указанные высокочастотные колебания на разных частотах последовательно во времени поступают на первый вход фазового манипулятора 32, на второй вход которого подается модулирующий код M(t) с выхода генератора 31 модулирующего кода (фиг.5, б).

Временной интервал между переключениями частот образует длительность частотного элемента (или период) и характеризует собой время работы на одной несущей частоте tc (фиг.6).

В зависимости от соотношения времени работы на одной частоте tc и длительности информационных символов mэ псевдослучайная перестройка рабочей частоты (ППРЧ) может быть разделена на межсимвольную, посимвольную и внутрисимвольную.

При межсимвольной ППРЧ m информационных символов, m≥2, передаются на одной частоте, при этом tc=mτэ. Каждый частотный канал занимает полосу частот Aw1. Расширенный спектр Δwc сигнала определяется величиной Δwc=MΔw1.

В результате фазовой манипуляции на выходе фазового манипулятора 32 образуется фазоманипулированный (ФМн) сигнал (фиг.5, в)

uci(t)=Ui·cos[wit+ϕк(t)+ϕi], 0≤t≤tс,

где ϕк(t)={0,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t) (фиг.5, б), причем ϕк{t)=const при кτэ<t<(к+1)τэ и может изменяться скачком при t=кτэ, т.е. на границах между элементарными посылками (к=1,2, ..., N-1);

τэ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Тсc=N·τэ).

Фрагмент ФМн-сигнала на i-ой рабочей частоте показан на фиг.3,в. В качестве примера m выбрано равным 4. При этом квадратами с различной наклонной штриховкой обозначены различные информационные символы (1, -1) с различными фазами (0, π) (фиг.6).

Следует отметить, что модулирующий код M(t) содержит информацию о номере сектора, в котором действует волна цунами, и величине электрического сигнала, вырабатываемого анемометром 11 данного сектора.

После включения передатчика 29 сформированный ФМн-сигнал uci(t) через телеграфный ключ 33 и усилитель 34 мощности поступает в антенну 35 и излучается ею в эфир, затем улавливается спутником связи - ретранслятором 36 и переизлучается им в направлении наземной станции с сохранением фазовых соотношений, принимается антенной 37 и поступает на первый вход смесителя 39. На второй вход смесителя 39 подается напряжение синтезатора 38 частот гетеродина:

которые формируются последовательно во времени с помощью генератора 58 псевдослучайной последовательности.

На выходе смесителя 39 образуются напряжения комбинационных частот. Усилителем 40 выделяется напряжение промежуточной частоты (фиг.5, г)

uпрi(t)=Uпрi·cos[wпрit+ϕк(t)+ϕпрi], 0≤t≤tс,

где

К1 - коэффициент передачи смесителя;

wnpi=wi-wгi - промежуточная частота;

ϕпрiiгi,

которое поступает на вход обнаружителя 41 (селектора) ФМн-сигнала, состоящего из удвоителя 43 фазы, анализаторов спектра 42 и 44, блока 45 сравнения, порогового блока 46 и линии 47 задержки.

На выходе удвоителя 43 фазы образуется гармоническое напряжение (фиг.5, д)

u2i(t)=U2i·cos(2wпрit+2ϕпрi), 0≤t≤tс,

где

К2 - коэффициент передачи перемножителя (в качестве удвоителя фазы может использоваться перемножитель, на два входа которого поступает один и тот же сигнал uпрi(t)).

Так как 2ϕk(t)={0,2π}, то в указанном напряжении манипуляция фазы уже отсутствует.

Ширина спектра Δf2 второй гармоники определяется длительностью Тс сигнала (Δf2=1/Тс), тогда как ширина спектра Δfс входного ФМн-сигнала определяется длительностью τэ его элементарных посылок (Δfс=1/τэ), т.е. ширина спектра Δf2 второй гармоники сигнала в N раз меньше ширины спектра Δfc входного ФМн-сигнала

Следовательно, при удвоении фазы ФМн-сигнала его спектр «сворачивается» в N раз. Это и позволяет обнаружить и отселектировать ФМн-сигнал среди других сигналов (помех) и шумов даже тогда, когда его мощность на входе приемника меньше мощности шумов и помех.

Ширина спектра Δfс входного ФМн-сигнала измеряется с помощью анализатора 42 спектра, а ширина спектра Δf2 второй гармоники сигнала измеряется с помощью анализатора 44 спектра. Напряжения UI и UII, пропорциональные Δfс и Δf2 соответственно, с выходов анализаторов 42 и 44 спектра поступают на два входа блока 45 сравнения. Так как UI>>UII то на выходе блока 45 сравнения образуется положительное напряжение, которое превышает пороговое напряжение Uпор в пороговом блоке 46. Пороговый уровень Uпор выбирается таким, чтобы его не превышали случайные помехи и шумы. При превышении порогового уровня Uпор в пороговом блоке 46 формируется постоянное напряжение, которое поступает на управляющий вход ключа 49, открывая его на вход линии 47 задержки и на вход звукового сигнализатора 48. Ключ 49 в исходном состоянии всегда закрыт.

При этом напряжение unpi(t) (фиг.5, г) с выхода усилителя 40 промежуточной частоты через открытый ключ 49 поступает на первый вход фазового детектора 53.

Необходимым условием работы фазового детектора 53 является наличие опорного напряжения, имеющего постоянную начальную фазу и частоту, равную частоте принимаемого ФМн-сигнала.

В данном случае опорное напряжение, необходимое для работы фазового детектора 53, выделяется непосредственно из самого принимаемого ФМн-сигнала промежуточной частоты.

С этой целью гармоническое напряжение u2(t) (фиг.5, д) выделяется первым узкополосным фильтром 50, подключенным к выходу удвоителя 43 фазы, и подается на вход делителя 51 фазы на два, на выходе которого образуется напряжение (фиг.5, е)

u3i(t)=U3i·cos(wпрit+ϕпрi), 0≤t≤tс,

которое выделяется узкополосным фильтром 52 и подается на второй (опорный) вход фазового детектора 53. На выходе фазового детектора 53 выделяется низкочастотное напряжение (фиг.5, ж)

uнi(t)=Uнi·cosϕк(t), 0≤t≤tс,

где

К3 - коэффициент передачи фазового детектора;

пропорциональное модулирующему коду M(t) (фиг.5, б). Это напряжение регистрируется блоком 54 регистрации. Данное напряжение содержит в цифровом виде данные о направлении распространения волн цунами и степени их опасности.

В блоке 54 регистрации может находится самописец. Перо последнего поднимается на высоту, пропорциональную (в масштабе тарирования) сигналу анемометра 11. Так на станции появляется запись момента возникновения цунами (по времени записи), ожидаемой высоты волны (по высоте подъема пера) и направления, откуда идет волна (по номеру анемометра и картограмме ориентации устройства по сторонам света).

Для повышения достоверности приема и регистрации сложного ФМн-сигнала последний дублируется несколько раз с интервалом, например, в 20 секунд (Тп=20 с). Это обеспечивается работой мультивибратора 26 в несимметричном режиме. Контакт 27.1 реле 27 мультивибратора 26 периодически через равные промежутки времени, например 20 с, замыкает цепь телеграфного ключа 33 передатчика 29, который и посылает в пространство ФМн-сигнал через тот же интервал времени. При этом звуковой сигнализатор 48 подает звуковые сигналы с интервалом в 20 секунд (Тп=20 с), что свидетельствует о степени цунами «опасно».

Время задержки т3 линии задержки 47 выбирается таким, чтобы можно было неоднократно принимать и зафиксировать принимаемый ФМн-сигнал. По истечении этого времени напряжение с выхода линии задержки 47 поступает на вход сброса порогового блока 46 и сбрасывает его содержимое на нулевое значение. При этом звуковой сигнализатор 48 прекращает свою работу, а ключ 49 закрывается, т.е. переводятся в свое исходное состояние. Устройство готово к дальнейшей работе.

При дальнейшем подъеме водных масс океана величина электрического тока, вырабатываемого анемометром 11, возрастает и превышает второй пороговый уровень Iпор2 во втором пороговом блоке 20. При этом второе реле 23 срабатывает, его контакт 23.1 замыкается и включает в схему мультивибратора 26 резистор 28. Включение резистора 28 в схему мультивибратора 26 переводит его работу в симметричный режим, реле 27 мультивибратора 26 срабатывает через равные интервалы времени, например в 2 секунды, и его контакт 27.1 замыкает цепь телеграфного ключа 33 передатчика 29 через тот же интервал времени (Тп=2 с). Это соответствует степени цунами «очень опасно».

При достижении водных масс океана третьего значения «чрезвычайно опасно» срабатывает третье реле 24, его контакт 24.1 замыкает цепь телеграфного ключа 33 передатчика 29 накоротко. При этом передатчик 29 посылает в пространство ФМн-сигнал длительностью

τ3=nTс,

где n - количество ФМн-сигналов длительностью Тс,

а звуковой сигнализатор 48 воспроизводит непрерывный звуковой сигнал. Дежурный оператор наземной станции оценивает степень опасности цунами для охраняемых районов по характеру звуковых сигналов, ожидаемой высоте волны и направлению ее распространения, причем последний фактор очень важен, потому что волна цунами может усиливаться или ослабляться, в зависимости от реальной топографии конкретной береговой линии и шельфа. На этом первый этап оценки опасности цунами заканчивается.

Второй этап начинается после срабатывания устройства у конкретно охраняемого района. Волна моделируется уже на масштабной копии реального шельфа (угол наклона днища 3 у секторов 9 точно повторяет наклон реального шельфа) с учетом усиливающего или ослабляющего действия береговой линии. Поэтому самописец выписывает реальную высоту волны цунами в масштабе. Возможен и вариант возникновения цунами между устройствами дальней и ближней установки, все равно волна будет зафиксирована тем, или иным, или обеими группами устройств, но времени на действия не будет меньше только в пределах τкр. Такая двухэтапная методика оценки опасности цунами позволяет снять излишнюю нервозность населения из-за неопределенности ситуации, исключить случаи объявления ложной тревоги и не объявления действительной опасности и повысить тем самым эффективность защиты людей и материальных ценностей от этого грозного стихийного бедствия.

Таким образом, предлагаемые способ и устройство по сравнению с прототипами обеспечивают повышение помехоустойчивости, достоверности и скрытности передачи тревожной информации о грозном стихийном бедствии с радиобуев на наземную станцию через ИСЗ-ретранслятор. Это достигается псевдослучайной перестройкой рабочей частоты используемых сложных сигналов с фазовой манипуляцией. При этом на наземной станции дежурным оператором оценивается степень опасности цунами для охраняемых районов по ожидаемой высоте волны и направлению ее распространения, а также по характеру звуковых сигналов.

Стратегия борьбы с непреднамеренными и организованными помехами в предлагаемых технических решениях заключается в «уходе» системы радиосвязи от воздействия помех путем псевдослучайной перестройки рабочей частоты и в «противоборстве» с ними путем фазовой манипуляции несущей частоты псевдослучайной последовательностью (ПСП).

Поэтому в предлагаемых способе и устройстве при защите от помех важной характеристикой является фактическое время работы на одной частоте tc. Чем меньше это время, тем выше вероятность того, что ФМн-сигналы системы радиосвязи с ППРЧ не будут подвержены воздействию организованных помех.

Помехоустойчивость системы радиосвязи зависит не только от времени работы на одной частоте, но и от вида помехи и ее мощности, мощности полезного сигнала, структуры приемника.

Сложные сигналы с фазовой манипуляцией открывают новые возможности в технике передачи тревожной информации. Указанные сигналы позволяют применять новый вид селекции - структурную селекцию. Это значит, что появляется новая возможность разделять сигналы, действующие в одной и той же полосе частот и в одни и те же промежутки времени. Принципиально можно отказаться от традиционного метода разделения рабочих частот используемого диапазона между работающими радиобуями и селекцией их на наземной станции с помощью частотных фильтров. Его можно заменить новым методом, основанным на одновременной работе каждого радиобуя во всем диапазоне частот, сложными ФМн-сигналами с выделением радиоприемным устройством сигнала необходимого радиобуя посредством его структурной селекции.

К числу других проблем, от решения которых в значительной степени зависит дальнейший прогресс средств радиосвязи с использованием ИСЗ-ретранслятора, следует отнести проблему установления надежной связи между радиобуями и наземной станцией при наличии многолучевого характера распространения радиоволн. Наличие многолучевого характера распространения радиоволн приводит к искажению принимаемых ФМн-сигналов, что затрудняет прием и снижает достоверность передачи тревожной информации с радиобуев на наземную станцию через ИСЗ-ретранслятор.

Следует отметить, что попытки преодолеть вредное влияние многолучевости предпринимаются уже давно. К ним можно отнести разнесенный прием, селекцию сигналов по времени и углу прихода, корректирующее кодирование и некоторые другие методы. Однако все они не дают принципиального решения проблемы.

Сложный ФМн-сигнал благодаря своим хорошим корреляционным свойствам может быть «свернут» в узкий импульс, длительность которого обратно пропорциональна используемой ширине полосы частот. Выбирая такую полосу частот, чтобы длительность «свернутого» импульса была меньше времени запаздывания, можно осуществить раздельный прием импульсов, приходящих в точку приема различными путями, а суммируя их энергию, можно, кроме того, повысить помехоустойчивость приема сложных ФМн-сигналов. Тем самым указанная проблема получает принципиальное разрешение.

С точки зрения обнаружения и разведки сложные ФМн-сигналы с ППРЧ обладают высокой энергетической, структурной, информационной, временной и пространственной скрытностью.

Энергетическая скрытность данных сигналов обусловлена их высокой сжимаемостью во времени и по спектру при оптимальной обработке, что позволяет снизить мгновенную излучаемую мощность. Вследствие этого сложный ФМн-сигнал в точке приема может оказаться замаскированным шумами и помехами. Причем энергия сложного ФМн-сигнала отнюдь не мала, она просто распределена по частотно-временной области так, что в каждой точке этой области мощность сигнала меньше мощности шумов и помех.

Структурная скрытность сложных ФМн-сигналов обусловлена большим разнообразием их форм и значительными диапазонами изменений параметров, что затрудняет оптимальную или хотя бы квазиоптимальную обработку сложных ФМн-сигналов априорно неизвестной структуры с целью повышения чувствительности приемника.

Информационная скрытность определяется способностью противостоять мерам радиотехнической разведки, направленным на раскрытие смысла тревожной информации, передаваемой с радиобуя на наземную станцию.

Временная скрытность системы радиосвязи, реализующей предлагаемый способ, определяется возможностью радиотехнической разведки по сбору необходимой информации о системе радиосвязи (виде и параметрах сигналов, назначении системы радиосвязи и т.п.) за определенное время и зависит от условий, в которых используется система радиосвязи, ее временных режимов работы на излучение, тактико-технических характеристик станции радиотехнической разведки и характера ведения разведки.

Пространственная скрытность системы радиосвязи характеризует способность препятствовать станции радиотехнической разведки с необходимой точностью определять направление прихода сигналов (или местоположение системы радиосвязи). Пространственная скрытность системы радиосвязи, как и другие виды скрытности, кроме энергетической, является условным событием и зависит от ряда параметров системы радиосвязи, например мощности сигнала, вида и параметров диаграммы направленности антенны.

Похожие патенты RU2350986C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ СТЕПЕНИ ОПАСНОСТИ ЦУНАМИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Петрушин Владимир Николаевич
  • Иванов Николай Николаевич
  • Калинин Владимир Анатольевич
RU2454686C1
СПОСОБ ОПРЕДЕЛЕНИЯ СТЕПЕНИ ОПАСНОСТИ ЦУНАМИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
  • Доронин Александр Павлович
RU2288487C1
СПОСОБ ОПРЕДЕЛЕНИЯ СТЕПЕНИ ОПАСНОСТИ ЦУНАМИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Дикарев Виктор Иванович
  • Доронин Александр Павлович
  • Дрожжин Владимир Васильевич
  • Свинарчук Андрей Александрович
  • Юнак Алевтин Иванович
RU2340919C1
ВЕРТОЛЕТНАЯ РАДИОЛОКАЦИОННАЯ СТАНЦИЯ 1999
  • Дикарев В.И.
  • Замарин А.И.
  • Рахматулин А.М.
  • Родин Д.Ф.
  • Косырев В.Ф.
RU2173864C1
СИСТЕМА ДЛЯ ПРЕДУПРЕЖДЕНИЯ О ЗЕМЛЕТРЯСЕНИЯХ И ЦУНАМИ 2007
  • Дикарев Виктор Иванович
  • Доронин Александр Павлович
  • Дрожжин Владимир Васильевич
  • Юнак Алевтин Иванович
  • Свинарчук Андрей Александрович
RU2349939C1
СИСТЕМА ДЛЯ ПРЕДУПРЕЖДЕНИЯ О ЗЕМЛЕТРЯСЕНИЯХ И ЦУНАМИ 2005
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
  • Доронин Александр Павлович
RU2290671C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ КОНЦЕНТРАЦИИ ОПАСНЫХ ГАЗОВ 2015
  • Дементьев Анатолий Алексеевич
  • Дикарев Виктор Иванович
  • Горшков Лев Капитонович
  • Рогалёв Виктор Антонович
RU2638915C2
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ КОНЦЕНТРАЦИИ ОПАСНЫХ ГАЗОВ 2010
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Мельников Владимир Александрович
  • Петрушин Владимир Николаевич
  • Михайлов Александр Николаевич
RU2411511C1
СПОСОБ СЛИЧЕНИЯ ШКАЛ ВРЕМЕНИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2009
  • Ипатов Александр Васильевич
  • Дикарев Виктор Иванович
  • Койнаш Борис Васильевич
  • Кузьмин Владимир Никифорович
  • Финкельштейн Андрей Михайлович
RU2389054C1
ВЕРТОЛЕТНЫЙ РАДИОЭЛЕКТРОННЫЙ КОМПЛЕКС 2009
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Мельников Владимир Александрович
  • Скворцов Андрей Геннадьевич
RU2419814C1

Иллюстрации к изобретению RU 2 350 986 C1

Реферат патента 2009 года СПОСОБ ОПРЕДЕЛЕНИЯ СТЕПЕНИ ОПАСНОСТИ ЦУНАМИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретения относятся к области сейсмологии и могут быть использованы для предупреждения о волнах цунами. Устройство, реализующее предлагаемый способ, содержит наземную станцию приема и обработки сигналов, спутник связи-ретранслятор, радиобуй и устройство регистрации. Способ реализуется следующим образом: размещают в прибрежной зоне группы устройств регистрации, соединяют их с наземными станциями приема и обработки сигналов. На радиобуе формируют высокочастотное колебание, манипулируют его по фазе модулирующим кодом. Сформированный сложный сигнал с фазовой манипуляцией усиливают по мощности, излучают в эфир. На наземной станции приема и обработки сигналов принимаемый сложный сигнал с фазовой манипуляцией преобразуют по частоте. Выделяют сложный сигнал с фазовой манипуляцией на промежуточной частоте, удваивают его фазу. Измеряют ширину спектра принимаемого сигнала с фазовой манипуляцией промежуточной частоты и его второй гармоники, сравнивают между собой. В случае значительного различия осуществляют синхронное детектирование принимаемого сигнала с фазовой манипуляцией промежуточной частоты. Выделяют низкочастотное напряжение, пропорциональное модулирующему коду, регистрируют его. При этом опорное напряжение, необходимое для синхронного детектирования принимаемого сигнала с фазовой манипуляцией промежуточной частоты, формируют путем выделения второй гармоники принимаемого сигнала с фазовой манипуляцией промежуточной частоты, деления его фазы на два и выделения гармонического напряжения промежуточной частоты. Суждение о степени опасности цунами выносят при превышении излученным сигналом трех пороговых уровней: «опасно», «очень опасно», «чрезвычайно опасно». Технический результат: повышение достоверности определения. 2 н.п. ф-лы, 6 ил.

Формула изобретения RU 2 350 986 C1

1. Способ определения степени опасности цунами, включающий размещение в прибрежной зоне на глубине более 100 м групп устройств регистрации, соединение их трактом связи с наземными станциями приема и обработки сигналов, установление дополнительной группы устройств регистрации на расстоянии 2-4 тысяч км от берега, размещение группы устройств в прибрежной зоне на расстоянии l от берега, определяемом по формуле

где τкр- нормальное время на защиту охраняемого района,

g- ускорение свободного падения, Н - средняя глубина моря между берегом и устройством, и выполнение в виде модели шельфа у береговой линии охраняемого района, при этом устройства закрепляют на дне моря тросовыми растяжками, наклоненными под углом 30-60° к горизонту и соединенными с корпусом устройства, по крайне мере, в трех равноудаленных друг от друга точках, по сигналам устройств регистрации определяют степень опасности волны цунами для охраняемого района, на радиобуе формируют высокочастотное колебание, манипулируют его по фазе модулирующим кодом, содержащим сведения о направлении распространения и степени опасности волны цунами для охраняемого района, сформированный сложный сигнал с фазовой манипуляцией усиливают по мощности, излучают в эфир с интервалом времени, определяемым степенью опасности волны цунами для охраняемого района, на наземной станции приема и обработки сигналов принимаемый сложный сигнал с фазовой манипуляцией преобразуют по частоте, выделяют сложный сигнал с фазовой манипуляцией на промежуточной частоте, удваивают его фазу, измеряют ширину спектра принимаемого сигнала с фазовой манипуляцией промежуточной частоты и его второй гармоники, сравнивают между собой и, в случае значительного различия, осуществляют синхронное детектирование принимаемого сигнала с фазовой манипуляцией промежуточной частоты, выделяют низкочастотное напряжение, пропорциональное модулирующему коду, и регистрируют его, при этом опорное напряжение, необходимое для синхронного детектирования принимаемого сигнала с фазовой манипуляцией промежуточной частоты, формируют путем выделения второй гармоники принимаемого сигнала с фазовой манипуляцией промежуточной частоты, деления его фазы на два и выделения гармонического напряжения промежуточной частоты, а суждение о степени опасности цунами выносят при превышении излученным сигналом трех пороговых уровней - первый пороговый уровень «опасно», второй пороговый уровень «очень опасно», третий пороговый уровень «чрезвычайно опасно», отличающийся тем, что на радиобуе формируют сетку частот высокочастотных колебаний, а на наземной станции приема и обработки формируют сетку частот гетеродина, сформированные сетки частот согласованно переключают последовательно во времени по закону псевдослучайной последовательности, между последовательными переключениями используют только одну несущую частоту высококачественного колебания и соответствующую частоту гетеродина и формируют временной интервал tc, который характеризует собой время работы на одной частоте и который содержит mинформационных символов длительностью τэ tc=mτэ, на каждом временном интервале tc на радиобуе осуществляют манипуляцию высокочастотного колебания каждой несущей частоты по фазе, а на наземной станции приема и обработки сигналов - преобразование по частоте с использованием сетки частот гетеродина и синхронное детектирование принимаемого сигнала с фазовой манипуляцией промежуточной частоты.

2. Устройство для определения степени опасности цунами, содержащее наземную станцию приема и обработки сигналов, спутник связи -ретранслятор, радиобуй и устройство регистрации, включающее корпус с крышкой и днищем и подводный кабель связи с наземной станцией, при этом крышка выполнена куполообразной, а днище в виде усеченного конуса, входящего меньшим основанием под куполообразную крышку, и соединено с ней ребрами жесткости, при этом последние разделяют внутренний объем устройства, по крайней мере, на четыре сектора, а большее основание конуса образует с крышкой кольцевую прорезь, в которой в каждом из секторов установлены анемометры, а верхняя часть секторов и сбросной шахты под куполообразной крышкой заполнена газообразным агентом, радиобуй выполнен в виде мультивибратора, передатчика и последовательно подключенных к выходам анемометров элемента ИЛИ и трех каналов обработки, каждый из которых состоит из последовательно включенных порогового блока и реле, передатчик выполнен в виде последовательно включенных фазового манипулятора, второй вход которого соединен с выходом генератора модулирующего кода, телеграфного ключа, усилителя мощности и передающей антенны, при этом передатчик и мультивибратор через замыкающий контакт первого реле подключены к источнику питания, замыкающий контакт второго реле включен последовательно с резистором в одно из плеч мультивибратора, замыкающие контакты третьего реле и реле мультивибратора подключены параллельно телеграфному ключу передатчика, наземная станция приема и обработки сигналов выполнена в виде последовательно включенных приемной антенны, смесителя, усилителя промежуточной частоты, удвоителя фазы, второго анализатора спектра, блока сравнения, второй вход которого через первый анализатор спектра соединен с выходом усилителя промежуточной частоты, порогового блока, второй вход которого через линию задержки соединен с его выходом, ключа, второй вход которого соединен с выходом усилителя промежуточной частоты, фазового детектора и блока регистрации, при этом к выходу удвоителя фазы последовательно подключены первый узкополосный фильтр, делитель фазы на два и второй узкополосный фильтр, выход которого соединен с вторым входом фазового детектора, к выходу порогового блока подключен звуковой сигнализатор, отличающееся тем, что передатчик радиобуя снабжен первым синхронизатором, первым генератором псевдослучайной последовательности и синхронизатором несущих частот, причем к выходу первого синхронизатора последовательно подключены первый генератор псевдослучайной последовательности и синхронизатор несущих частот, выход которого соединен с первым входом фазового манипулятора, а наземная станция приема и обработки сигналов снабжена вторым синхронизатором, вторым генератором псевдослучайной последовательности и синхронизатором частот гетеродина, причем к выходу второго синхронизатора последовательно подключены второй генератор псевдослучайной последовательности и синтезатор частот гетеродина, выход которого соединен с вторым входом смесителя.

Документы, цитированные в отчете о поиске Патент 2009 года RU2350986C1

СПОСОБ ОПРЕДЕЛЕНИЯ СТЕПЕНИ ОПАСНОСТИ ЦУНАМИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
  • Доронин Александр Павлович
RU2288487C1
RU 2066468 С1, 10.09.1996
СИСТЕМА ДЛЯ ПРЕДУПРЕЖДЕНИЯ О ЗЕМЛЕТРЯСЕНИЯХ И ЦУНАМИ 2005
  • Заренков Вячеслав Адамович
  • Заренков Дмитрий Вячеславович
  • Дикарев Виктор Иванович
  • Доронин Александр Павлович
RU2290671C1
US 4214238 А, 22.07.1980.

RU 2 350 986 C1

Авторы

Дикарев Виктор Иванович

Доронин Александр Павлович

Дрожжин Владимир Васильевич

Юнак Алевтин Иванович

Свинарчук Андрей Александрович

Даты

2009-03-27Публикация

2007-08-13Подача