Изобретение относится к области регистрации излучений радиационными методами и может быть использовано для дефектоскопии изделий в производственных и полевых условиях, а также для обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д.
Известен детектор нейтронов, содержащий волоконный модуль, собранный из слоев полимерных сцинтиллирующих оптических волокон, уложенных попеременно в двух взаимно перпендикулярных направлениях, и электронно-оптическую систему регистрации оптического излучения, выходящего из торцов этих волокон, электронно-оптическая система содержит фотоприемники. Патент США №4942302, МПК: G01T 3/06, 1990 г.
Указанное устройство имеет низкую эффективность, т.к. не обеспечивает двухкоординатную регистрацию протонов отдачи с пробегом меньше поперечного сечения одиночного волокна; а также имеет ограничения по количеству волокон в слое и числу слоев, накладываемые числом используемых фотоприемников. Устройство имеет ограниченное пространственное разрешение, определяемое сечением волокна.
Известен детектор нейтронов, выполненный в виде блока из слоев полимерных сцинтиллирующих оптических элементов, уложенных попеременно в двух взаимно перпендикулярных направлениях, содержащий электронно-оптическую систему регистрации оптического излучения, выходящего из торцов этих волокон.
Торцы волокон расположены в плоскостях граней волоконного параллелепипеда, образуемого слоями волокон, а электронно-оптическая система выполнена в виде позиционно-чувствительных фотоприемников, оптически сопряженных с соответствующими гранями волоконного параллелепипеда. Диаметр волокон равен половине длины свободного пробега протона отдачи в материале волокна.
Электронно-оптическая система содержит подсистемы, в которые введены полупрозрачные пластины для ответвления оптической мощности на быстродействующие приемники. Патент Российской Федерации №2119178, МПК: G01T 3/06, 1998 г.
Детектор нейтронов сложен для реализации, имеет низкую эффективность, низкое пространственное разрешение, предназначен для регистрации быстрых нейтронов, не позволяет идентифицировать излучение и определять направление излучения. Размеры элементов ограничены и представляют собой волокна с поперечным размером не более 1 мм.
Известен многослойный детектор, выполненный в виде блока из слоев полимерных сцинтиллирующих оптических элементов, изготовленных из набора материалов, плотность которых монотонно возрастает от первого ряда к последнему слою, и фотоприемники. Рекламный листок Института физики твердого тела Российской Академии Наук, Черноголовка, Московской области. 2005 г. «Антитеррористические просвечивающие установки для экспрессного выявления взрывчатых веществ».
Недостатком такого детектора и установки в целом является необходимость получения изображения скрытых предметов при просвечивании рентгеновским излучением конкретных предметов в явочном порядке. Детектор предназначен для регистрации лишь одного типа излучения, а именно рентгеновского, и не может регистрировать нейтронное излучение.
Известен координатно-чувствительный детектор, содержащий блок из водородосодержащих сцинтиллирующих оптических элементов, уложенных рядами попеременно в двух взаимно перпендикулярных направлениях, и фотоприемники. В детекторе сцинтиллирующие оптические элементы выполнены в виде стержней с прямоугольным сечением, на одной из граней каждого стержня выполнены пазы, в пазах размещены сцинтиллирующие волокна, на торцах волокон расположены фотодиоды, фотодиоды обеспечены выводами для соединения со схемами регистрации сцинтилляционных вспышек. Патент Российской Федерации на полезную модель №54440, МПК: G01T 3/06, 2006 г. Прототип.
Прототип обладает сравнительно низкой технологичностью (обработка каждого отдельного стержня, выполнение в нем канавок и т.п.) изготовления детектора и низким пространственным разрешением, определяемым сечением стержня.
Данное изобретение устраняет недостатки аналогов и прототипа.
Задачей изобретения является разработка технологичного детектора ионизирующих излучений для визуализации пространственного распределения плотности потока ионизирующих излучений с улучшенными свойствами: повышенной эффективностью и пространственным разрешением, стабильностью, механической прочностью, сроком службы. Разработка детекторов практически любой площади, не требующих высоковольтного питания, специальных помещений и т.п.
Техническим результатом изобретения является расширение энергетического диапазона регистрации проникающих излучений и их видов, повышение эффективности сбора света, возникающего в сцинтилляторе при прохождении через него ионизирующей частицы и его транспортировки к фотодиодам, повышение пространственного разрешения регистрации ионизирующей частицы.
Технический результат достигается тем, что в двухкоординатном детекторе, содержащем блок сцинтиллирующих оптических элементов со светопереизлучающими волокнами, на торцах которых расположены фотодиоды, фотодиоды снабжены выводами для соединения со схемами регистрации сцинтилляционных вспышек, блок выполнен в виде, по крайней мере, одной сцинтиллирующей пластины с закрепленными на ней на разных плоскостях рядами светопереизлучающих волокон, расположенных перпендикулярно друг другу, а фотодиоды светопереизлучающих волокон расположены на торцах пластины и подключены к схеме регистрации с выходным регистром.
Двухкоординатный детектор содержит не менее двух сцинтиллирующих пластин с закрепленными на них рядами светопереизлучающих волокон, расположенных перпендикулярно друг другу.
Двухкоординатный детектор содержит не менее двух пар сцинтиллирующих пластин с закрепленными рядами светопереизлучающих волокон, расположенных перпендикулярно друг другу, с возможностью плоскопараллельного перемещения последующей пары относительно предыдущей пары с шагом, не превышающим диаметра светопереизлучающего волокна.
Сущность изобретения поясняется на фиг.1 и 2.
На фиг.1 представлена схема двухкоординатного детектора, где:
1 - пластины сцинтиллятора, 2 - фотоприемные устройства, 3 - светопоглощающий слой (пластина), расположенный между пластинами.
На фиг.2 представлена схема двухкоординатного детектора, где:
1 - пластины сцинтиллятора поперечным размером D,
2 - фотоприемные устройства (фотодиоды), 4 - примеры направления движения ионизирующей частицы.
Рассмотрим работу устройства на примере координатно-чувствительного детектора из одной пластины.
Однокоординатный координатно-чувствительный детектор состоит из сцинтиллирующей пластины 1, фотодиодов 2, расположенных по торцам пластины, и электронной платы с выходным регистром (на фигурах плата не показана).
Материал пластины сцинтиллятора 1 как светосборника прозрачен для света.
При прохождении через пластины сцинтиллятора 1 ионизирующей частицы сигнал возникает в нескольких ближайших фотодиодах 2, количество которых определяется количеством рожденных фотонов. Определение координаты сцинтилляционной вспышки проводят на основании сравнения амплитуд сигналов, поступивших с различных фотодиодов 2, и нахождения центра тяжести пространственного распределения этих сигналов.
Фотодиоды 2 подключены к электронной плате, которая при поступлении сигнала с фотодиода 2 вырабатывает аналоговый сигнал, оцифровывает его и заносит в выходной регистр с указанием времени прихода, номера светопереизлучающего волокна и амплитуды его сигнала.
Материал сцинтиллирующих пластин 1 для регистрации тепловых нейтронов представляет собой сцинтиллирующее стекло, содержащее литий-6.
Материал сцинтиллирующих пластин 1 для регистрации заряженных частиц представляет собой сцинтиллирующее стекло или пластмассовый сцинтиллятор. Материал сцинтиллирующих пластин 1 для регистрации гамма-излучения представляет собой сцинтиллирующее стекло, пластмассовый сцинтиллятор или пластины из NaI(Tl) с выходными окнами из стекла.
Для повышения пространственного разрешения однокоординатный координатно-чувствительный детектор выполнен из нескольких слоев. Причем смежные слои выполнены с возможностью их плоскопараллельного перемещения относительно друг друга. Пространственная координата определяется из анализа амплитуд сигналов, поступивших с различных сцинтиллирующих пластин 1 и фотодиодов 2 координатно-чувствительного детектора в целом.
Шаг, на который один слой смещен относительно другого, меняют в зависимости от числа слоев в пределах от 0 до размера D сцинтиллирующей пластины или разбрасывают по закону случайных чисел в указанных пределах.
Для определения двух координат места пересечения ионизирующей частицей регистрирующего устройства его выполняют из двух идентичных однокоординатных детекторов с взаимно перпендикулярным расположением фотодиодов 2, каждый из которых работает, как описано выше. Как известно, светопереизлучающие волокна обеспечивают эффективный сбор света, возникающего в сцинтиллирующей пластине 1 при прохождении ионизирующей частицы и транспортировке света к фотодиодам 2.
Поэтому для упрощения конструкции в целом и для повышения эффективности регистрации ионизирующих частиц пластины сцинтиллятора 1 снабжены светопереизлучающими волокнами (на фигурах не показаны).
Для уменьшения потерь света в пластине сцинтиллятора 1 светопереизлучающие волокна с пластиной сцинтиллятора 1 соединяют с помощью оптического контакта (клея) - иммерсионной среды с близким (или промежуточным для материалов волокна, сцинтиллятора, выходного окна сцинтиллятора) коэффициентом преломления.
Наличие на пластине сцинтиллятора 1 светопереизлучающих волокон позволило изготовить простейший двухкоординатный детектор излучений с расположением светопереизлучающих волокон на обеих сторонах пластины сцинтиллятора 1.
название | год | авторы | номер документа |
---|---|---|---|
КООРДИНАТНО-ЧУВСТВИТЕЛЬНЫЙ ДЕТЕКТОР | 2007 |
|
RU2351954C2 |
СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР | 2010 |
|
RU2408905C1 |
ДЕТЕКТОР ГОДОСКОПА | 2010 |
|
RU2447460C1 |
СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР | 2010 |
|
RU2444763C1 |
СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР | 2010 |
|
RU2449319C1 |
СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР | 2014 |
|
RU2574416C1 |
ДЕТЕКТОР РЕЛЯТИВИСТСКИХ ЧАСТИЦ | 2008 |
|
RU2377600C1 |
ДВУХКООРДИНАТНЫЙ ПРИЗМАТИЧЕСКИЙ ДЕТЕКТОР | 2007 |
|
RU2354995C1 |
ПРИЗМАТИЧЕСКИЙ ДЕТЕКТОР | 2007 |
|
RU2356068C1 |
ДВУХКООРДИНАТНЫЙ ДЕТЕКТОР | 2010 |
|
RU2408902C1 |
Изобретение относится к области приборостроения и может быть использовано для регистрации излучений радиационными методами. Технический результат - расширение функциональных возможностей. Для достижения данного результата блок регистрации излучений выполнен в виде сцинтиллирующей пластины. На пластине закреплены на разных плоскостях рядами светопереизлучающие волокна. Волокна расположены перпендикулярно друг другу. Фотодиоды светопереизлучающих волокон расположены на торцах пластины и подключены к схеме регистрации с выходным регистром. 2 з.п. ф-лы, 2 ил.
1. Двухкоординатный детектор, содержащий блок сцинтиллирующих оптических элементов со светопереизлучающими волокнами, на торцах которых расположены фотодиоды, фотодиоды снабжены выводами для соединения со схемами регистрации сцинтилляционных вспышек, отличающийся тем, что блок выполнен в виде, по крайней мере, одной сцинтиллирующей пластины с закрепленными на ней на разных плоскостях рядами светопереизлучающих волокон, расположенных перпендикулярно друг другу, а фотодиоды светопереизлучающих волокон расположены на торцах пластины и подключены к схеме регистрации с выходным регистром.
2. Двухкоординатный детектор по п.1, отличающийся тем, что он содержит не менее двух сцинтиллирующих пластин с закрепленными на них рядами светопереизлучающих волокон, расположенных перпендикулярно друг другу.
3. Двухкоординатный детектор по п.1, отличающийся тем, что он содержит не менее двух пар сцинтиллирующих пластин с закрепленными рядами светопереизлучающих волокон, расположенных перпендикулярно друг другу, с возможностью плоско-параллельного перемещения последующей пары относительно предыдущей пары с шагом, не превышающим диаметра светопереизлучающего волокна.
Прибор для отделения охлаждающей воды от пара | 1937 |
|
SU54440A1 |
НЕЙТРОННЫЙ ДЕТЕКТОР | 1997 |
|
RU2119178C1 |
Горн Л.С., Хазанов Б.И | |||
Современные приборы для измерения ионизирующих излучений | |||
- М.: Энергоатомиздат, 1989, с.85-87 | |||
УСТАНОВКА ДЛЯ ПРИГОТОВЛЕНИЯ суспЕнз! | 0 |
|
SU365203A1 |
US 5532491 А, 02.07.1996. |
Авторы
Даты
2009-04-27—Публикация
2007-08-09—Подача