ЛОГОПЕРИОДИЧЕСКАЯ ВИБРАТОРНАЯ АНТЕННА Российский патент 2009 года по МПК H01Q11/10 

Описание патента на изобретение RU2356140C1

Изобретение относится к антенной технике и может быть использовано в стационарных и мобильных системах связи в дециметровом и сантиметровом диапазонах волн, в частности, в качестве широкополосной приемопередающей антенны сотовой связи, а также в радиопеленгации и нелинейной радиолокации. Известны логопериодические вибраторные антенны (ЛПВА), содержащие ряд симметричных вибраторов, записываемых от двухпроводной распределительной линии, плечи которых подключены к ней противофазно [Peixeiro С. Design of logperiodic dipole antennas. - JEE Proc., 1988, vol.135, Pt. H, №2, p.98-102]. Отношение длин плеч соседних вибраторов в таких антеннах связано с масштабным множителем τ - периодом логопериодической структуры, а расстояние между вибраторами находится в зависимости от пространственного множителя σ. В классическом варианте выполнения ЛПВА (симметричные прямолинейные вибраторы, двухпроводная распределительная линия питания, коаксиальный кабель возбуждения линии питания) геометрию антенны определяют из условия реализации максимального коэффициента направленного действия (КНД) путем выбора параметров τ и σ [В.А.Яцкевич, В.С.Александров. Проектирование логопериодических вибраторных антенн. - Антенны, 2005, вып.7-8, с.3-12]. При фиксированном значении τ существует оптимальное значение σ, при котором ЛПВА имеет наибольший КНД. Образовавшаяся для этой пары τ и σ логопериодическая вибраторная структура считается оптимальной. Увеличение τ при оптимальном значении σ приводит к росту КНД, вибраторная структура стремится к периодической и при значениях τ, близких к единице, достигается максимально возможный для бесконечной структуры КНД, а характеристики структуры будут близки к частотно-независимым [2]. Однако, если размеры вибраторной структуры конечны, то при реализации максимального КНД возникает проблема ее согласования с коаксиальным фидером антенны. Особенно заметно она проявляется при больших значениях τ, т.е. при реализации больших КНД.

Известные оптимальные ЛПВА имеют недостаточно высокий уровень согласования вибраторной структуры антенны с возбуждающим двухпроводную линию коаксиальным фидером, имеющим стандартные значения волнового сопротивления Wф=50 и 75 Ом.

Известно также, что активная составляющая входного сопротивления ЛПВА колеблется вокруг волнового сопротивления логопериодической вибраторной структуры, которое в свою очередь зависит от волнового сопротивления Wл двухпроводной линии [3, с.209]. Следовательно, путем выбора значения Wл можно согласовать активную составляющую входного сопротивления ЛПВА с волновым сопротивлением Wф, возбуждающего антенну коаксиального фидера. Однако рекомендуемые в [2, с.10, табл.2] для этого значения Wл приведены лишь для частного случая Wф=75 Ом, причем не оговорены условия их применения. Существующие электродинамические методы анализа ЛПВА и компьютерные программы дают большие погрешности определения геометрии и элетрических характеристик двухпроводной линии при Wл<150 Ом из-за использования тонкопроволочного приближения.

Для улучшения согласования антенны с фидером на нижнем и верхнем участках рабочего диапазона частот в [2, с.7 рис.2, с.8] предложено двухпроводную линию закончить со стороны наибольшего вибратора короткозамкнутым шлейфом длиной lкз=0,125 λmax и продлить ее за наименьший вибратор на lxx=0,06λmin. Однако эти меры позволяют уменьшить коэффициент стоячей волны (КСВн) в фидере до значений 1,5-1,7 только в узких диапазонах частот, в пределах которых осуществляется компенсация реактивных составляющих входного сопротивления антенны на указанных участках рабочего диапазона частот.

Среди известных решений наиболее близким по технической сущности к заявленному устройству является логопериодическая вибраторная антенна по патенту Российской Федерации №2189676 С 2, МКИ H01Q 11/10, опубликованному 2002.09.20.

Она содержит ряд симметричных вибраторов, запитываемых от двухпроводной распределительной линии, возбуждаемой коаксиальным фидером, при этом каждый последующий симметричный вибратор в ряде запитан противофазно предшествующему симметричному вибратору, а отношение длин плеч соседних вибраторов и отношение расстояний между симметричными вибраторами выбраны по соотношениям образования оптимальной логопериодической вибраторной структуры.

Данное техническое решение имеет ограничение, заключающееся в недостаточно высоком уровне широкополосного согласования антенны с коаксиальным фидером, так как в нем не оптимизированы значения волнового сопротивления двухпроводной распределительной линии и не предусмотрена конструктивная возможность его практической реализации при малых значениях. Это не позволяет достичь наилучшего широкополосного согласования антенны с коаксиальным фидером, имеющим стандартные значения волнового сопротивления Wф=50 и 75 Ом, что снижает качество приема и передачи радиосигналов в широкой полосе частот.

В изобретении решается задача повышения качества приема и передачи радиосигналов в широкой полосе частот, а также надежности обнаружения излучений за счет улучшения согласования антенны с коаксиальным фидером.

Технический результат, который может быть получен при использовании предлагаемой логопериодической вибраторной антенны, заключается в снижении коэффициента стоячей волны в коаксиальном фидере антенны в широкой полосе частот с коэффициентом перекрытия не менее 2.

Для решения поставленной задачи с достижением указанного технического результата в известной логопериодической вибраторной антенне, содержащей ряд симметричных вибраторов, запитываемых от двухпроводной распределительной линии, возбуждаемой коаксиальным фидером, при этом каждый последующий симметричный вибратор в ряде запитан противофазно предшествующему симметричному вибратору, а отношение длин плеч соседних вибраторов и отношение расстояний между симметричными вибраторами выбраны по соотношениям образования оптимальной логопериодической вибраторной структуры, согласно изобретению симметричные вибраторы и двухпроводная распределительная линия выполнены в виде полосковых проводников, расположенных с двух сторон диэлектрического основания, причем отношение волнового сопротивления двухпроводной распределительной линии Wл к волновому сопротивлению коаксиального фидера Wф, выбрано из соотношений для коаксиального фидера с волновым сопротивлением для коаксиального фидера с Wф=75 Ом, а отношение длины ln n-го вибратора логопериодической структуры к эквивалентному диаметру ап полоскового проводника вибратора выбрано удовлетворяющим условию , где n=1, 2…N.

На фиг.1 изображен общий вид заявленной логопериодической вибраторной антенны. На фиг.2 показана плата печатной логопериодической вибраторной структуры. На фиг.3 показана экспериментальная частотная зависимость активной Rвх и реактивной Хвх составляющей входного сопротивления предлагаемой ЛПВА в диапазоне частот с перекрытием fв/fн=2. На фиг.4 приведены результаты измерения КСВн и коэффициента усиления Ga предлагаемой антенны в широкой полосе частот.

Логопериодическая вибраторная антенна содержит ряд симметричных вибраторов 1, присоединенных к двухпроводной распределительной линии 2, и коаксиальный фидер 3, проложенный по одному из проводников линии 2. Внешний проводник (оплетка) 6 коаксиального фидера 3 имеет гальванический контакт с проводником линии 2, по которому проложен фидер 3. Вибраторы 1 и проводники двухпроводной линии 2 выполнены в виде полосковых проводников с двух сторон диэлектрического основания 4. Внутренний проводник 6 коаксиального фидера 3 через отверстие у наименьшего вибратора 1 выведен на противоположную проложенному по проводнику линии 2 внешнему проводнику 5 фидера 3 сторону основания 4, где он имеет гальванический контакт с другим проводником линии 2, например припаян к нему.

Печатная логопериодическая вибраторная структура (фиг.2) содержит N полосковых симметричных вибраторов 1 с изменяющейся по геометрической прогрессии длиной ln=l1·τn-1 и шириной Sn=S1·τn-1 (l1, S1 соответственно длина и ширина наибольшего вибратора, n=1, 2…N) и двухпроводную линию 2 питания вибраторов 1 в виде двух полосковых проводников одинаковой ширины "b" с диэлектрическим заполнением между ними, образующих ленточную линию (см. фиг.1). Полосковые симметричные вибраторы и полосковые проводники ленточной линии выполнены фотохимическим (печатным) методом с двух сторон диэлектрического основания 4 платы толщиной h. Геометрия вибраторной структуры определяется параметрами: τ - периодом логопериодической структуры; σ - пространственным множителем структуры; α - полным углом при вершине структуры; N - числом вибраторов структуры; εr - относительной диэлектрической проницаемостью материала основания платы. Ленточная линия реализуется с помощью известной формулы для h/b«1

Логопериодическая вибраторная антенна в режиме передачи работает следующим образом. Волна от генератора по коаксиальному фидеру 3 распространяется к точке 6 возбуждения логопериодической вибраторной структуры и далее по двухпроводной (ленточной) линии 2 питания вибраторов 1 распространяется в обратном направлении в сторону более длинных вибраторов. При распространении волны по линии 2 она наиболее интенсивно возбуждает вибраторы, длины ln которых близки к резонансным (активная область структуры). При удалении от активной области как в сторону больших ln-1, так и в сторону меньших ln+1 вибраторов интенсивность их возбуждения быстро спадает - происходит отсечка токов вибраторной структуры, причем отношение частот , на которых резонируют соседние вибраторы, равно τ. Отсечка токов обеспечивается путем переменно-фазного включения плеч вибраторов 1 в двухпроводную линию питания 2, что позволяет сформировать излучение вибраторов активной области с максимумом в сторону вершины структуры. Возбуждение волны в распределительной линии 2 ЛПВА осуществляется коаксиальным фидером 3, который, как правило, имеет стандартные значения волнового сопротивления Wф=50 и 75 Ом. Оптимизация геометрии логопериодической структуры антенны по КНД достигается путем выбора пары параметров τ и σ. Существует, как показывает анализ, два предела достижения максимальных значений КНД: верхний предел - КНД=10-11,5 дБ и нижний предел - КНД=6-7,5 дБ. Для верхнего предела τ=0,94-0,96, σ=0,21; для нижнего предела τ=0,82-0,86; σ=0,16 [2, рис.2, 4]. Для достижения заявленного технического результата необходимо установить для верхнего и нижнего пределов КНД соотношения, позволяющие определить значения волнового сопротивления двухпроводной распределительной линии питания 2 Wл, при которых обеспечивается наилучшее согласование логопериодической вибраторной структуры антенны с коаксиальным фидером 3, имеющим стандартные значения Wф.

Наилучшее согласование достигается, как известно, если в фидере обеспечивается режим бегущей волны, т.е. при выполнении условия и , где и - среднее значение соответственно активной и реактивной составляющей входного сопротивления антенны. При волновое сопротивление двухпроводной линии связано с заданным значением Wф следующим соотношением:

где ,

ρв - эквивалентное волновое сопротивление вибраторов 1 антенны;

ln - длина n-го вибратора структуры;

аn - эквивалентный диаметр полоскового проводника n-го вибратора.

Волновое сопротивление логопериодической вибраторной структуры Wлог определяется выражением [3, с.203]:

Так как в (2) и (3) отсутствует зависимость Wл и Wлог от частоты, то все полученные с их помощью результаты являются частотно-независимыми. По формулам (2) и (3) были выполнены расчеты оптимальных по наилучшему согласованию ЛПВА с коаксиальным фидером ) значений параметров ρв, В, , Wлог антенны для верхнего и нижнего пределов КНД и стандартных значений Wф=50 и 75 Ом. Результаты расчетов представлены в таблице.

Параметр антенны Wф=50 Ом Wф=75 Ом Верхний предел КНД=10-11,5 дБ Нижний предел КНД=6-7,5 дБ Верхний предел КНД=10-11,5дБ Нижний предел КНД=6-7,0 дБ τ 0,94 0,84 0,94 0,84 σ 0,21 0,16 0,21 0,16 18,5 50 18,5 50 ρв, Ом 80 199,4 80 199,4 В 0,3644 0,191 0,54 0,287 1,43 1,21 1,68 1,33 Wлог 50 50 75 75

В таблице каждой паре параметров τ и σ соответствует оптимальный по КНД вариант антенны. Значения параметра lnn=18,5 и 50, используемых при расчетах ρв, выбраны из соображений реализации верхнего и нижнего пределов достижения максимального КНД [2, рис.4]. Они также являются оптимальными с точки зрения широкополосности и возможностей печатной технологии изготовления вибраторов.

Из результатов расчетов следует, что для заданных стандартных значений волнового сопротивления коаксиального фидера Wф=50 и 75 Ом существуют значения волнового сопротивления двухпроводной распределительной линии Wл для верхнего и нижнего пределов КНД оптимальной ЛПВА, при которых обеспечивается равенство волновых сопротивлений логопериодической вибраторной структуры и возбуждающего ее коаксиального фидера среднему значению активной составляющей входного сопротивления антенны (Wлог=Wф=) и, следовательно, при выполнении условия реализуется наилучшее согласование антенны с коаксиальным фидером в широкой полосе частот. Оптимальные по широкополосному согласованию значения волнового сопротивления двухпроводной линии определяются, как следует из таблицы, соотношениями:

для волнового сопротивления Wф=50 Ом и

для волнового сопротивления Wф=75 Ом.

При выполнении соотношений (4) и (5) в коаксиальном фидере предлагаемой антенны с Wф=50 и 75 Ом устанавливается режим бегущей волны, который не имеет принципиальных ограничений по ширине полосы рабочих частот.

Таким образом, за счет выполнения симметричных вибраторов и двухпроводной распределительной линии логопериодической вибраторной антенны в виде полосковых проводников, расположенных с двух сторон диэлектрического основания, и выбора с использованием формулы (1) отношения размеров образовавшейся при этом ленточной распределительной линии по найденным из соотношений (4) и (5) значениям волнового сопротивления ленточной распределительной линии Wл обеспечивается в коаксиальном фидере антенны режим бегущей волны. Это, в свою очередь, определяет малый по величине и в среднем постоянный в широкой полосе частот коэффициент стоячей волны в возбуждающем коаксиальном фидере логопериодической антенны с оптимальной геометрией вибраторной структуры, т.е. улучшает согласование антенны с коаксиальным фидером в широкой полосе частот.

Сказанное подтверждается не только приведенными выше теоретическими выводами и физическими принципами работы антенны, но и результатами экспериментальных исследований образцов предлагаемой ЛПВА. Результаты измерений активной Rвх и реактивной Хвх составляющей входного сопротивления образца антенны с Wф=50 Ом, τ=0,84, σ=0,16, рассчитанной на нижний предел КНД=6-7,5 дБ в диапазоне частот Δf=2380-4760 МГц и выполненной в виде полосковой конструкции с ленточной распределительной линией на диэлектрической подложке толщиной h=1,5 мм и εr=5 (материал подложки "Флан-5"), имеющей Wл=60,5 Ом (b=4,17 мм), представлены на фиг.3. Видно, что в диапазоне частот с коэффициентом перекрытия активная составляющая входного сопротивления антенны Rвх колеблется (периодически меняется) в пределах ±25 Ом вокруг волнового сопротивления коаксиального фидера Wф, причем ее среднее значение а реактивная составляющая входного сопротивления антенны Хвх колеблется вокруг нулевого значения и ее среднее значение . Периодический характер изменения Rвх и Хвх со средними значениями и указывает на принципиальную возможность реализации низких значений КСВн в широкой полосе частот. Эта возможность проверена экспериментально на образце предлагаемой антенны с оптимальной для КНД=10 дБ геометрией (τ=0,92, σ=0,2) в диапазоне частот с перекрытием . Антенна выполнена на диэлектрической подложке с εr=5 и h=1,5 мм, значение параметра выбрано равным для всех полосковых вибраторов структуры. Ленточная распределительная линия имела волновое сопротивление Wл=71,5 Ом (b=3,53 мм), возбуждающий коаксиальный фидер Wф=50 Ом. Результаты измерений (фиг.4) показывают, что в полосе частот с перекрытием реализуются значения КСВн=1,3…1,7 (средние значения 1,5). Таким образом, реализация заявленной геометрии логопериодической вибраторной структуры и ленточной распределительной линии позволяет снизить коэффициент стоячей волны в коаксиальном фидере антенны в среднем до 1,5 в широкой полосе частот с коэффициентом перекрытия не менее 2.

Оценим возможность реализации двухпроводной линии ЛПВА, определяемой соотношением (4), при выполнении линии из проводников круглого сечения диаметром d и расстоянии D между центрами проводников. Для верхнего и нижнего пределов (4) и Wф=50 Ом волновое сопротивление двухпроводной линии равно соответственно Wл=60,5 и 71,5 Ом. Используя известную формулу , получаем, что при выполнении двухпроводной линии, имеющей волновое сопротивление Wл=60,5 и 71,5 Ом, из проводников круглого сечения с d=4, 6, 10 мм под стандартные диаметры коаксиальных кабелей зазоры между проводниками составляют: D - d=0,52; 0,78 и 1,3 мм для Wл=60,5 Ом и 0,73; 1,1 и 1,82 мм для Wл=71,5 Ом. Реализовать двухпроводную линию с такими малыми зазорами между проводниками весьма проблематично. Однако в полосковом исполнении (фиг.1) двухпроводная линия 2 с волновым сопротивлением Wл=60,5 и 71,5 Ом легко реализуется, например, на отечественном высокочастотном диэлектрическом материале типа флан - 5×1,5 мм (b=4,17 и 3,53 мм; h=1,5 мм) или импортном материале типа Rodgers 4350 В (εr=3,2; h=0,7 мм) с использованием технологии изготовления печатных плат фотохимическим методом.

Литература

1. Peixeiro С. Design of logperiodic dipole antennas. - JEE Proc., 1988, vol. 135, Pt. H, №2, p.98-102.

2. Яцкевич В.А., Александров B.C. Проектирование логопериодических вибраторных антенн. - Антенны, 2005, вып.7-8, с.3-12.

3. Жук М.С., Молочков Ю.Б. Проектирование линзовых, сканирующих, широкодиапазонных антенн и фидерных устройств. - М.: "Энергия", 1973.

Похожие патенты RU2356140C1

название год авторы номер документа
ЛОГОПЕРИОДИЧЕСКАЯ ВИБРАТОРНАЯ АНТЕННА 2015
  • Мирошниченко Анатолий Яковлевич
  • Сергеев Максим Дмитриевич
  • Гусев Евгений Петрович
RU2655724C2
МИКРОПОЛОСКОВАЯ ЛОГОПЕРИОДИЧЕСКАЯ АНТЕННА 2014
  • Волхонская Елена Вячеславовна
  • Коротей Евгений Владимирович
  • Кужекин Дмитрий Владимирович
RU2571607C1
ЛОГОПЕРИОДИЧЕСКАЯ КОМБИНИРОВАННАЯ АНТЕННА 2010
  • Канаев Константин Александрович
  • Мещеряков Денис Викторович
  • Попов Олег Вениаминович
  • Рожков Александр Георгиевич
  • Смирнов Павел Леонидович
  • Соломатин Александр Александрович
  • Шепилов Александр Михайлович
RU2427946C1
Синфазная антенная решетка 1989
  • Волошин Виктор Алексеевич
  • Мошиченко Владимир Григорьевич
  • Щербинин Виктор Иванович
SU1732387A1
ЛОГОПЕРИОДИЧЕСКАЯ АНТЕННА ИЗ ЛИНЕЙНО-СПИРАЛЬНЫХ ВИБРАТОРОВ 2007
  • Беда Сергей Иванович
  • Елисеев Валерий Николаевич
  • Катанович Андрей Андреевич
  • Передин Юрий Григорьевич
  • Скворцов Андрей Геннадьевич
RU2366046C2
ЛОГОПЕРИОДИЧЕСКАЯ ВИБРАТОРНАЯ АНТЕННА 1994
  • Коновалов А.Г.
  • Нефедьев В.М.
RU2088003C1
ЛОГОПЕРИОДИЧЕСКАЯ ВИБРАТОРНАЯ АНТЕННА 1992
  • Колобов В.А.
  • Левитан Б.А.
  • Полухин Г.А.
  • Ремизов Б.А.
  • Рувинский В.И.
  • Шишлов А.В.
  • Шубов А.Г.
RU2048696C1
СВЕРХШИРОКОПОЛОСНАЯ СИММЕТРИЧНАЯ ЛОГОПЕРИОДИЧЕСКАЯ ВИБРАТОРНАЯ АНТЕННА С Т-ОБРАЗНЫМИ ПЛЕЧАМИ, КОНСТРУКТИВНО ВЫПОЛНЕННАЯ В ДИЭЛЕКТРИЧЕСКОМ КАРКАСЕ 2015
  • Николаев Валентин Александрович
  • Сколотнев Михаил Константинович
  • Миклашевская Любовь Геннадьевна
  • Ботов Денис Владимирович
RU2638076C2
ТУРНИКЕТНАЯ ВИБРАТОРНАЯ ЛОГОПЕРИОДИЧЕСКАЯ АНТЕННА ПОПЕРЕЧНОГО ИЗЛУЧЕНИЯ 2010
  • Белянский Владимир Борисович
  • Худяков Кирилл Николаевич
  • Аблин Натан Борисович
RU2461927C2
ЛОГОПЕРИОДИЧЕСКАЯ ВИБРАТОРНАЯ АНТЕННА 2000
  • Фидельман В.Е.
RU2189676C2

Реферат патента 2009 года ЛОГОПЕРИОДИЧЕСКАЯ ВИБРАТОРНАЯ АНТЕННА

Изобретение относится к антенной технике и может быть использовано в системах связи дециметрового и сантиметрового диапазонов волн, в частности, в качестве широкополосной приемопередающей антенны сотовой связи, а также в радиопеленгации и нелинейной радиолокации. Техническим результатом является снижение коэффициента стоячей волны в коаксиальном фидере в широкой полосе частот с коэффициентом перекрытия не менее 2. Антенна содержит ряд симметричных вибраторов, двухпроводную распределительную линию, возбуждаемую коаксиальным фидером, при этом каждый последующий симметричный вибратор в ряду запитан противофазно предшествующему симметричному вибратору, а отношение длин плеч соседних вибраторов и отношение расстояний между симметричными вибраторами выбраны по соотношениям образования оптимальной логопериодической структуры. Симметричные вибраторы и двухпроводная распределительная линия выполнены в виде полосковых проводников, расположенных с двух сторон диэлектрического основания. 4 ил., 1 табл.

Формула изобретения RU 2 356 140 C1

Логопериодическая вибраторная антенна, содержащая ряд симметричных вибраторов, запитываемых от двухпроводной рапределительной линии, возбуждаемой коаксиальным фидером, при этом каждый последующий симметричный вибратор в ряду запитан противофазно предшествующему симметричному вибратору, а отношение длин плеч соседних вибраторов и отношение расстояний между симметричными вибраторами выбраны по соотношениям образования оптимальной логопериодической вибраторной структуры, отличающаяся тем, что симметричные вибраторы и двухпроводная распределительная линия выполнены в виде полосковых проводников, расположенных с двух сторон диэлектрического основания, причем отношение волнового сопротивления двухпроводной распределительной линии Wл к волновому сопротивлению коаксиального фидера Wф выбрано из соотношений для коаксиального фидера с волновым сопротивлением Wф=50 Ом и для коаксиального фидера с
Wф=75 Ом, а отношение длины ln n-го вибратора логопериодической структуры к эквивалентному диаметру αn полоскового проводника вибратора выбрано удовлетворяющим условию , где n=1, 2, … N.

Документы, цитированные в отчете о поиске Патент 2009 года RU2356140C1

ЯЦКЕВИЧ В.А., АЛЕКСАНДРОВ B.C
Проектирование логопериодических вибраторных антенн
Антенны, вып.7, 8, 2005, с.3-21
ЛОГОПЕРИОДИЧЕСКАЯ ВИБРАТОРНАЯ АНТЕННА 2000
  • Фидельман В.Е.
RU2189676C2
RU 15814 U1, 10.11.2000
US 4492964 A, 08.01.1985
US 5886672 A, 23.03.1999
DE 3338444 A1, 02.05.1985.

RU 2 356 140 C1

Авторы

Мирошниченко Анатолий Яковлевич

Крутько Анатолий Тимофеевич

Даты

2009-05-20Публикация

2008-01-14Подача