Изобретение относится к нефтегазодобывающей промышленности и может найти применение при определении перетоков жидкости в скважине.
Известен способ определения негерметичности обсадной колонны скважины, оборудованной колонной насосно-компрессорных труб, включающий регистрацию расхода закачиваемой в скважину жидкости расходомером, спускаемым ниже воронки колонны насосно-компрессорных труб. Регистрацию расхода закачиваемой жидкости осуществляют одновременно и на устье скважины расходомером такой же конструкции, что и спускаемый в скважину, на отрезке трубы в линии нагнетания, находящейся в промежутке между насосным агрегатом и устьем скважины. По несоответствию расходов закачиваемой воды, регистрированных расходомерами, судят о негерметичности эксплуатационной колонны. В качестве расходомеров используют расходомеры электромагнитного действия, а диаметр отрезка трубы выбирают равным диаметру эксплуатационной колонны скважины. При этом в качестве закачиваемой жидкости в скважину выбирают электропроводную жидкость (Патент РФ №2211327, опубл. 2003.08.27).
Способ основан на определении расхода. Способ сложен, требует оснащения специальными приспособлениями, не всегда достаточно точен.
Наиболее близким к изобретению по технической сущности является способ контроля герметичности нагнетательной скважины, включающий замер давления на устье на входе в колонну насосно-компрессорных труб и в межтрубном пространстве. Регистрацию изменения давления проводят по сравнению давлений до и после остановки скважины по скорости падения давления на устье и в межтрубном пространстве после остановки работающей скважины и по сравнению давлений до и после пуска скважины под закачку по скорости повышения давления на устье и в межтрубном пространстве после пуска скважины под закачку. За критерий оценки герметичности межтрубного пространства принимают расчетную величину расхода жидкости, входящей или выходящей из межтрубного пространства скважины (Патент РФ №2246613, опубл. 2005.02.20 - прототип).
Известный способ не учитывает возможные нарушения герметичности колонны насосно-компрессорных труб и их влияние на точность измерения давления. Способ не позволяет определить пласт как источник поступления жидкости в скважину или как зону поглощения жидкости из скважины.
В предложенном изобретении решается задача повышения точности определения сообщения скважины с обводненным пластом.
Задача решается тем, что в способе определения межпластовых перетоков в скважине, включающем замер давления в скважине, согласно изобретению замер давления в скважине проводят высокочувствительным манометром при гидропрослушивании от окружающих возмущающих нагнетательных скважин, работающих на отдельные пласты как сообщающиеся, так и несообщающиеся или не должные сообщаться со скважиной, работу возмущающих скважин ведут на периодах возмущения разной продолжительности, а за критерий оценки наличия или отсутствия перетоков жидкости в скважине выбирают соответственно наличие или отсутствие периодического изменения давления в исследуемой скважине от работы возмущающей скважины, характеризуемое амплитудой.
Признаками изобретения являются:
1) замер давления в скважине;
2) замер давления высокочувствительным манометром;
3) то же при гидропрослушивании от окружающих возмущающих нагнетательных скважин, работающих на отдельные пласты как сообщающиеся, так и несообщающиеся или не должные сообщаться со скважиной;
4) работа возмущающих скважин на периодах возмущения разной продолжительности;
5) критерий оценки наличия или отсутствия перетоков жидкости в скважине соответственно наличие или отсутствие периодического изменения давления в исследуемой скважине от работы возмущающей скважины, характеризуемое амплитудой.
Признак 1 является общим с прототипом, признаки 2-5 являются существенными отличительными признаками изобретения.
Сущность изобретения
Определению перетоков в скважине посвящено много работ, однако известные технические решения не позволяют с достаточной достоверностью определить, от какого пласта, т.е. от какого источника поступает жидкость в скважину или в какой пласт уходит жидкость из скважины. Нередко после установки цементного моста, после ликвидации заколонных перетоков в скважине отмечается поступление жидкости, источник которой неизвестен, а следовательно, не определен путь ликвидации такого нарушения. Часто из-за установки цементного моста или по каким-либо другим причинам в скважине не имеется зумпфа. Расстояние от нижних перфорационных отверстий до цементного моста оказывается столь малым, что под интервалом перфорации оказывается невозможным размещение глубинных исследовательских приборов типа расходомеров, термометров, манометров и пр. В этом случае применение известных способов определения перетоков невозможно. Для этого случая в предложенном способе решается задача не только установления самого факта нежелательного поступления жидкости в скважину, но и определения источника ее поступления, т.е. повышения точности определения сообщения скважины с обводненным пластом. Задача решается следующим образом.
Для определения перетоков жидкости проводят замер давления в скважине высокочувствительным манометром при гидропрослушивании от окружающих возмущающих нагнетательных скважин, работающих на отдельные пласты как сообщающиеся, так и несообщающиеся или не должные сообщаться со скважиной. При этом работу возмущающих скважин ведут на периодах возмущения разной продолжительности, а за критерий оценки наличия или отсутствия перетоков жидкости в скважине выбирают соответственно наличие или отсутствие периодического изменения давления в исследуемой скважине от работы возмущающей скважины, характеризуемое амплитудой.
При наличии гидродинамической связи скважины с пластом, в котором вызывают возмущение, в скважине неизбежно возникает отклик на это возмущение. При отсутствии гидродинамической связи такого отклика в скважине не возникает. На этом принципе построен предлагаемый способ. Сначала выбирают нагнетательную скважину, заведомо имеющую гидродинамическую связь через пласт с коллектором с исследуемой скважиной, и неимеющую гидродинамической связи с прочими пластами, вскрытыми исследуемой скважиной. В выбранной нагнетательной скважине проводят возмущающее воздействие остановкой закачки рабочего агента и возобновлением закачки. Периоды возмущения, т.е. продолжительности остановки закачки, изменяют. Наиболее желательными периодами являются остановки закачки на 96, 48 и 24 час. Исследуемую скважину останавливают, в ней размещают глубинный высокочувствительный манометр, например типа АМТВ, и регистрируют изменение давления. Чувствительность манометра составляет 0,001 МПа. Затем выбирают другую нагнетательную скважину, не имеющую гидродинамической связи с предыдущим пластом, но имеющую гидродинамическую связь с пластом, от которого возможно поступление жидкости в скважину. В новой нагнетательной скважине проводят возмущающее воздействие и регистрируют отклик возмущения в исследуемой скважине. Если исследуемой скважиной вскрыты несколько пластов, то по каждому такому пласту находят нагнетательную скважину, вскрывшую этот пласт, в ней проводят возмущение и регистрируют отклик в исследуемой скважине. При этом не имеет значения, сообщается этот пласт напрямую с исследуемой скважиной или он заизолирован, например, постановкой цементного моста, отсечен пакером, перекрыт перекрывателем, затампонирован и т.п. При наличии отклика по заизолированному пласту делают предположение о наличии перетока в скважину из этого пласта. Окончательный ответ о наличии перетока делают по критерию оценки наличия или отсутствия перетоков жидкости, согласно которому определяется амплитуда зарегистрированного сигнала давления в исследуемой скважине с помощью Фурье-анализа. Если амплитуда сигнала первой гармоники ниже разрешающей способности манометра, т.е. менее 0,001 МПа, то делается вывод об отсутствии перетока. В противном случае делается вывод о наличии перетоков. При определениях используют следующее соотношение: - формула определения амплитуды первой гармоники разложения Фурье изменения давления в исследуемой скважине, где Δp0 - амплитуда первой гармоники разложения Фурье изменения давления в исследуемой скважине, МПа; aK, bK - коэффициенты Фурье.
Более простым является графический способ определения амплитуды и сдвига фаз зарегистрированного сигнала.
Пример конкретного выполнения
Проводят определение перетоков жидкости в нефтедобывающей скважине, вскрывшей три пласта на глубинах 1598.7-1600.4, 1601.9-1603,4, 1604.7-1610.4 м. Верхний пласт эксплуатируется скважиной с дебитом 5 м3/сут. Два нижних пласта выработаны, обводнены и перекрыты цементным мостом. В скважине отмечается повышенная обводненность добываемой нефти, не характерная для рабочего пласта. Состав пластовой воды в среднем и нижнем пласте одинаков. Из-за цементного моста скважина лишена зумпфа и размещение глубинных измерительных приборов ниже работающего интервала перфорации невозможно. Вследствие этого определить источник перетоков жидкости в скважине традиционными способами потокометрии, термометрии и проч. не представляется возможным.
Скважину останавливают. В скважине на глубине 1598 м размещают высокочувствительный автономный манометр-термометр-влагомер АМТВ с возможностью регистрации изменения давления на 0.001 МПа. Находят 1 нагнетательную скважину на расстоянии 400 м, вскрывшую верхний пласт и не имеющую гидродинамической связи с двумя прочими пластами. В выбранной нагнетательной скважине проводят возмущающее воздействие остановкой закачки рабочего агента и возобновлением закачки на периоды 96, 48 и 24 час. В исследуемой скважине регистрируют изменение давления. Находят 2 нагнетательную скважину на расстоянии 1000 м, вскрывшую средний пласт и не имеющую гидродинамической связи с двумя прочими пластами. В выбранной нагнетательной скважине проводят возмущающее воздействие остановкой закачки рабочего агента и возобновлением закачки на периоды 96, 48 и 24 час. В исследуемой скважине регистрируют изменение давления. Находят 3 нагнетательную скважину на расстоянии 800 м, вскрывшую верхний пласт и не имеющую гидродинамической связи с двумя прочими пластами. В выбранной нагнетательной скважине проводят возмущающее воздействие остановкой закачки рабочего агента и возобновлением закачки на периоды 96, 48 и 24 час. В исследуемой скважине регистрируют изменение давления. Таким образом, выполняют гидропрослушивание от окружающих возмущающих нагнетательных скважин, работающих на отдельные пласты как сообщающиеся, так и несообщающиеся или не должные сообщаться со скважиной. Результаты определения изменения давления при гидропрослушивании приведены ниже. За критерий оценки наличия или отсутствия перетоков жидкости в скважине выбирают соответственно наличие или отсутствие периодического изменения давления в исследуемой скважине от работы возмущающей скважины, характеризуемое амплитудой.
Для среднего пласта амплитуда составляет
Для нижнего пласта амплитуда составляет
Из результатов гидропрослушивания следует, что цементный мост в интервале среднего пласта негерметичен. Из среднего пласта имеется переток жидкости в скважину. Цементный мост подлежит ремонту.
Таким образом, предложенный способ позволяет точно определить сообщение скважины с обводненным пластом.
Применение предложенного способа позволит повысить точность определения перетоков жидкости в скважине.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОДНОВРЕМЕННО-РАЗДЕЛЬНОГО ИССЛЕДОВАНИЯ И РАЗРАБОТКИ МНОГОПЛАСТОВЫХ МЕСТОРОЖДЕНИЙ (ВАРИАНТЫ) | 2008 |
|
RU2371576C1 |
Способ определения фильтрационных параметров в многоскважинной системе методом Импульсно-Кодового Гидропрослушивания (ИКГ) | 2016 |
|
RU2666842C1 |
СПОСОБ ПРОСЛУШИВАНИЯ МЕЖСКВАЖИННЫХ ИНТЕРВАЛОВ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ | 2011 |
|
RU2465455C1 |
Способ определения фильтрационно-емкостных характеристик пласта и способ увеличения нефтеотдачи с его использованием | 2020 |
|
RU2752802C1 |
Способ определения гидродинамической связи между участками продуктивного пласта и фильтрационно-емкостных свойств межскважинного пространства сеноманской залежи при запуске промысла после остановок по результатам интегрального гидропрослушивания на скважинах | 2023 |
|
RU2819121C1 |
СПОСОБ ВЫРАБОТКИ НЕФТЯНОГО ПЛАСТА | 1997 |
|
RU2099513C1 |
Способ определения фильтрационно-емкостных свойств межскважинного интервала пласта | 2020 |
|
RU2747959C1 |
СПОСОБ ЛИКВИДАЦИИ МЕЖПЛАСТОВЫХ ПЕРЕТОКОВ | 2010 |
|
RU2413840C1 |
Способ межскважинного гидропрослушивания в условиях газоконденсатных месторождений | 2023 |
|
RU2815885C1 |
СПОСОБ УТОЧНЕНИЯ ГЕОЛОГО-ГАЗОДИНАМИЧЕСКОЙ МОДЕЛИ ГАЗОВОЙ ЗАЛЕЖИ ПО ДАННЫМ ЭКСПЛУАТАЦИИ | 2017 |
|
RU2657917C1 |
Изобретение относится к нефтегазодобывающей промышленности и может найти применение при определении перетоков жидкости в скважине. Обеспечивает повышение точности определения сообщения скважины с обводненным пластом. Сущность изобретения: по способу выполняют замер давления в скважине высокочувствительным манометром с возможностью регистрации изменения давления на 0,001 МПа при гидропрослушивании от окружающих возмущающих нагнетательных скважин, работающих на отдельные пласты как сообщающиеся, так и несообщающиеся или не должные сообщаться со скважиной. Работу возмущающих скважин ведут на периодах возмущения разной продолжительности. За критерий оценки наличия или отсутствия перетоков жидкости в скважине выбирают соответственно наличие или отсутствие периодического изменения давления в исследуемой скважине от работы возмущающей скважины, характеризуемое амплитудой первой гармоники изменения давления.
Способ определения межпластовых перетоков в скважине, включающий замер давления в скважине, отличающийся тем, что замер давления в скважине проводят высокочувствительным манометром с возможностью регистрации изменения давления на 0,001 МПа при гидропрослушивании от окружающих возмущающих нагнетательных скважин, работающих на отдельные пласты, как сообщающиеся, так и не сообщающиеся или не должные сообщаться со скважиной, работу возмущающих скважин ведут на периодах возмущения разной продолжительности, а за критерий оценки наличия или отсутствия перетоков жидкости в скважине выбирают соответственно наличие или отсутствие периодического изменения давления в исследуемой скважине от работы возмущающей скважины, характеризуемое амплитудой первой гармоники изменения давления.
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ НАГНЕТАТЕЛЬНОЙ СКВАЖИНЫ | 2004 |
|
RU2246613C1 |
МЕТОДИКА ОПТИМИЗАЦИИ ДОБЫЧИ ИЗ МНОГОСЛОЙНЫХ СМЕШАННЫХ ПЛАСТОВ С ИСПОЛЬЗОВАНИЕМ ДАННЫХ О ДИНАМИКЕ ИЗМЕНЕНИЯ ДЕБИТА СМЕШАННЫХ ПЛАСТОВ И ДАННЫХ ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ В ЭКСПЛУАТАЦИОННЫХ СКВАЖИНАХ | 2001 |
|
RU2274747C2 |
СПОСОБ МОНИТОРИНГА ЗА ПОДЗЕМНЫМ РАЗМЕЩЕНИЕМ ЖИДКИХ ПРОМЫШЛЕННЫХ ОТХОДОВ В ГЛУБОКИХ ВОДОНОСНЫХ ГОРИЗОНТАХ | 2003 |
|
RU2244823C1 |
Способ выделения интервалов заколонных перетоков в скважине | 1989 |
|
SU1819991A1 |
СПОСОБ ИЗУЧЕНИЯ ПРОДУКТИВНЫХ ПЛАСТОВ ПРИ БЕСКОМПРЕССОРНОЙ ЭКСПЛУАТАЦИИ | 1993 |
|
RU2067171C1 |
Способ определения межпластовых перетоков нефти | 1974 |
|
SU516807A1 |
СПОСОБ ИССЛЕДОВАНИЯ ЖИДКОФАЗНЫХ ДИНАМИЧЕСКИХ ПРОЦЕССОВ В ПЛАСТАХ С АНОМАЛЬНО НИЗКИМ ДАВЛЕНИЕМ | 1999 |
|
RU2164599C2 |
US 5734988 A, 31.03.1998 | |||
US 4501324 A, 26.02.1981. |
Авторы
Даты
2009-07-10—Публикация
2008-08-05—Подача