Изобретение относится к анализу объектов радиационными методами с помощью нейтронного излучения.
Известно устройство, содержащее источник проникающего излучения, коллиматор, формирующий падающий на объект поток излучения в виде малорасходящихся пучков, средство перемещения объекта относительно падающего на него излучения, пространственный фильтр и детектор. Патент Российской Федерации №2119659, МПК G01N 23/02, 1998 г. Устройство имеет сложную кинематическую структуру для идентификации расходящегося пучка после исследуемого объекта.
Известен импульсный нейтронный генератор быстрых нейтронов, содержащий блок трубки (БТ) в виде металлического корпуса, залитого жидким диэлектриком, в котором расположена нейтронная трубка с ее схемой питания, блок коммутации (БК) со схемой формирования ускоряющего импульса, блок электроники (БЭ). Сборник материалов, Межотраслевая научно-технической конференция «ПОРТАТИВНЫЕ ГЕНЕРАТОРЫ НЕЙТРОНОВ И ТЕХНОЛОГИИ НА ИХ ОСНОВЕ», Москва, Россия, Всероссийский научно-исследовательский институт автоматики им. Н.Л.Духова, с.74. 2004.
В качестве прототипа выбран серийно выпускаемый генератор ИНГ-101 T. Образовавшиеся ионы дейтерия ускоряются и бомбардируют мишень нейтронной трубки, где в результате реакции 1H2+1H3 ->2Не4+n образуются нейтроны с энергией 14 МэВ.
Известно облучательное устройство, содержащее источник быстрых нейтронов, конвертер и коллиматор тепловых нейтронов, внутренняя поверхность которого облицована материалом с большим сечением рассеяния тепловых нейтронов, например полиэтиленом, и имеет форму усеченного конуса, фильтр для очистки пучка тепловых нейтронов от гамма-квантов и диафрагму для регулирования диаметра пучка тепловых нейтронов. Замедлитель выполнен из бериллия или графита. Патент Российской Федерации №2252798, МПК A61N 5/10, 2005. Прототип.
Аналоги и прототип обеспечивают высокий уровень радиационной безопасности, но при этом характеризуются сложностью конструкции.
Настоящее изобретение устраняет недостатки аналогов и прототипа.
Техническим результатом изобретения является повышение эффективности преобразования быстрых нейтронов в тепловые, уменьшение времени экспозиции, уменьшение влияния фонового сигнала.
Технический результат достигается тем, что в источнике тепловых нейтронов, содержащем источник быстрых нейтронов и конвертер, блок-замедлитель быстрых нейтронов выполнен из полиэтилена в виде полого куба, конвертер установлен внутри блока-замедлителя, между торцевой поверхностью конвертера и внутренней поверхностью блока-замедлителя размещен слой полиэтилена с образованием полости, на внешней поверхности блока-замедлителя последовательно расположены конвертер-отражатель, слой защиты от гамма-излучения, слой защиты для поглощения тепловых и быстрых нейтронов.
Конвертер-отражатель выполнен из свинца, слой защиты от гамма-излучения выполнен из висмута, слой защиты для поглощения тепловых и быстрых нейтронов выполнен из борированного полиэтилена.
Полость внутри блока-замедлителя лежит в диапазоне от 1×1×1 см до 10×10×10 см, а центр полости совпадает с максимумом плотности потока тепловых нейтронов в отсутствии полости.
Сущность изобретения поясняется на фигурах 1-4.
На Фиг.1 представлен источник тепловых нейтронов, где 1 - источник быстрых нейтронов (изотопный источник или нейтронный генератор), 2 - блок-замедлитель быстрых нейтронов в виде полого куба размером 20×20×20 см, выполнен из полиэтилена, 3 - полость внутри куба (размер полости 3 лежит в диапазоне от 1×1×1 см до 10×10×10 см, а центр полости 3 находится на расстоянии 6,5 см от источника быстрых нейтронов 1), 4 - входное отверстие для размещения облучаемых образцов (отверстие закрывается пробкой из тех же материалов, что и стенки блока-замедлителя 2), 5 - конвертер выполнен из вольфрама и имеет площадь 15×15 см и толщиной 2 см, 6 - конвертер-отражатель из свинца толщиной 20 см, 7 - слой защиты от гамма-излучения и нейтронного излучений из висмута толщиной 10 см, 8 - слой защиты из борированного полиэтилена для поглощения тепловых и быстрых нейтронов (содержание бора не менее 3 мас.%) толщиной 16 см.
На фиг.2 представлены экспериментальные кривые 1 и 2 и теоретическая кривая 3 зависимости пространственного распределения плотности потока тепловых нейтронов внутри блока - замедлителя 2 (кривая 1 - для размеров 30×30×30 см; кривая 2 - для размеров 50×50×50 см; кривая 3 - теоретический расчет для размеров 30×30×30 см).
На фиг.3 представлена зависимость пространственного распределения плотности потока тепловых нейтронов внутри замедлителя от толщины вольфрамового конвертера 5 (кривая 1-0,5 см; кривая 2-1 см; кривая 3-2 см; кривая 4-3 см; кривая 5-4 см).
На фиг.4 представлена зависимость величины кадмиевого отношения RCd в блоке-замедлителе 2 вдоль оси Х блока-замедлителя 2 (кривая 1 - без конвертера; кривая 2 - с вольфрамовым конвертером 5 толщиной 2 см).
В таблице представлены значения плотностей потока тепловых нейтронов и коэффициентов преобразования быстрых нейтронов в тепловые в центре каждой внутренней поверхности полости и в центре полости (характерные из них помечены звездочками): *поверхность полости, ближайшей к мишени; **поверхность полости, дальней от мишени; ***центр полости.
Источник тепловых нейтронов работает следующим образом. Быстрые нейтроны источника 1 излучаются в полный телесный угол. Значительная их часть попадает в вольфрамовый конвертер 5. Конвертер 5 расположен между источником нейтронов 1 и блоком-замедлителем 2. Экспериментальные исследования показали, что площадь конвертера 5 должна быть не менее 15×15 см, а толщина 2 см. Между торцевой поверхностью конвертера 5 и ближайшей поверхностью полости 3 расположен слой полиэтилена не менее 2 см.
Для использования в качестве конвертера 4 наиболее эффективны материалы: Be, W, Pb и U. В данном устройстве конвертер выполнен из вольфрама. При прохождении быстрых нейтронов через конвертер 4 происходит неупругое рассеяние быстрых нейтронов, при котором в результате одного акта рассеяния нейтрон теряет энергию, что позволяет уменьшить размер полиэтиленового блока-замедлителя 2. Одновременно возникает реакция (n, 2n), сечение которой для большинства изотопов вольфрама составляет около 2 барн. Это приводит к размножению нейтронов и уменьшению их энергии.
Эксперименты и расчеты показывают, что увеличение линейных размеров блока-замедлителя 2 более 20 см нецелесообразно. На фиг.2 приведено экспериментальное распределение плотности потока тепловых нейтронов ft для сплошного блока-замедлителя 2 размером 30×30×30 и 50×50×50 см вдоль оси, совпадающей с осью полости, и результаты теоретического расчета. Как видно из приведенных зависимостей, максимум распределения плотности потока тепловых нейтронов fт находится в районе 4 см от источника быстрых нейтронов и незначительно увеличивается с увеличением размера блока-замедлителя 2. Расчетные результаты удовлетворительно совпадают с экспериментальными данными.
Быстрые нейтроны попадают в полиэтиленовый блок-замедлитель 2, в котором испытывают столкновения с ядрами водорода. В результате столкновения быстрые нейтроны замедляются до энергии 0,07 эВ, близкой к энергии тепловых нейтронов. Тепловые нейтроны, рожденные в полиэтиленовом блоке-замедлителе 2, пронизывают полость 3 и сталкиваются с материалом конвертера-отражателя 6. При этом они частично испытывают отражение обратно в блок-замедлитель 2. Дополнительно, конвертер-отражатель 6 преобразует не замедлившиеся еще быстрые нейтроны за счет реакции (n, 2n), как и в конвертере 5, от источника быстрых нейтронов 1.
Тепловые нейтроны, не испытавшие отражение от стенок конвертера-отражателя 6, вытекают наружу и поглощаются в основном в слое защиты 7 от гамма-излучения и нейтронного излучений из висмута толщиной 10 см. Частично тепловые нейтроны поглощаются внутри блока-замедлителя 2 в результате неупругого рассеяния на водороде.
Гамма-излучение, возникающее в результате неупругого рассеяния тепловых нейтронов в блоке-замедлителе 2, ослабляется в конвертере-отражателе 6 и дополнительно в слое защиты из висмута - 7, так как количество рожденных в нем гамма-квантов из-за неупругого рассеяния быстрых нейтронов примерно в 10 раз меньше, чем в свинце.
Слой защиты из борированного полиэтилена - 8 (содержание бора не менее 3 мас.%) толщиной 16 см поглощает вышедшие из блока-замедлителя 2 оставшиеся тепловые и быстрые нейтроны.
Положение центра полости 3 внутри блока-замедлителя 2 при наличии конвертера совпадает с максимумом плотности потока тепловых нейтронов в отсутствии полости и в данном случае находится на расстоянии 6,5 см от источника быстрых нейтронов 1.
На фиг.3 приведено распределение плотности потока тепловых нейтронов fт вдоль оси блока-замедлителя размером 20×20×20 см при различных толщинах конвертера 4 из вольфрама. Оптимальным является вольфрамовый конвертер 4 размером 15×15×2 см.
На фиг.4 изображена зависимость величины кадмиевого отношения RCd в блоке-замедлителе 2 из полиэтилена размером 20×20×20 см в зависимости от расстояния до источника быстрых нейтронов при наличии и отсутствии конвертера 4.
При расстоянии от источника быстрых нейтронов в диапазоне от 2,5 см до 20 см величина кадмиевого отношения RCd изменялась от 25 до 55 без конвертера 5 и от 25 до 80 с конвертером 5. В области максимума плотности потока тепловых нейтронов fт величина кадмиевого отношения RCd составляет 60-70.
Для размещения облучаемых образцов в блоке-замедлителе 2 выполнена полость 3, размер которой изменяют в зависимости от размера облучаемого образца в диапазоне от 1×1×1 см до 10×10×10 см. Центр полости расположен на оси блока-замедлителя 2 в месте максимума распределения плотности потока тепловых нейтронов ft.
Экспериментальные значения распределения плотности потока тепловых нейтронов ft при потоке быстрых нейтронов 9.1010 нейтр/с для полости размером 10×10×10 см на внутренних ее поверхностях и в центре, нормированные на один тепловой нейтрон, представлены в таблице. Наиболее характерные точки помечены звездочками.
Измерения выполнены с использованием методики активационного анализа с образцами Мn. Для получения единичного флюенса (1 нейтр./см2) тепловых нейтронов требуется 1,7·103 быстрых нейтронов, то есть коэффициент преобразования К=Фб/fт, где Фб - поток быстрых нейтронов. Из таблицы следует, что внутри полости плотность потока тепловых нейтронов практически постоянна.
название | год | авторы | номер документа |
---|---|---|---|
КОЛЛИМАТОР | 2007 |
|
RU2366014C1 |
РАДИОГРАФИЧЕСКАЯ УСТАНОВКА | 2007 |
|
RU2362148C1 |
ФОТОНЕЙТРОННЫЙ ИСТОЧНИК | 2017 |
|
RU2634330C1 |
Способ оценки полного сечения взаимодействия материала с тепловыми нейтронами | 2024 |
|
RU2825431C1 |
СПОСОБ ОБНАРУЖЕНИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВ, УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ), КАМЕРА ДЛЯ УСТРОЙСТВА ОБНАРУЖЕНИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВ | 1994 |
|
RU2079835C1 |
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ВЗРЫВЧАТОГО ВЕЩЕСТВА В КОНТРОЛИРУЕМОМ ПРЕДМЕТЕ | 2005 |
|
RU2280248C1 |
СПОСОБ НЕЙТРОН-ЗАХВАТНОЙ ТЕРАПИИ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2141860C1 |
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВ В КОНТРОЛИРУЕМЫХ ПРЕДМЕТАХ, ПРЕИМУЩЕСТВЕННО В АВИАБАГАЖЕ | 1991 |
|
RU2011974C1 |
ОБЛУЧАТЕЛЬНОЕ УСТРОЙСТВО ДЛЯ НЕЙТРОННО-ЗАХВАТНОЙ ТЕРАПИИ НА ЯДЕРНОМ РЕАКТОРЕ | 2003 |
|
RU2252798C2 |
УМНОЖИТЕЛЬ НЕЙТРОНОВ | 2018 |
|
RU2689399C1 |
Использование: для анализа объектов радиационными методами с помощью нейтронного излучения. Сущность заключается в том, что источник тепловых нейтронов содержит источник быстрых нейтронов и конвертер, при этом блок-замедлитель быстрых нейтронов выполнен из полиэтилена в виде полого куба, внутри блока-замедлителя установлен конвертер, между торцевой поверхностью конвертера и внутренней поверхностью блока-замедлителя размещен слой полиэтилена с образованием полости, на поверхности блока-замедлителя последовательно расположены конвертер-отражатель, слой защиты от гамма-излучения, слой защиты для поглощения тепловых и быстрых нейтронов. Технический результат: повышение эффективности преобразования быстрых нейтронов в тепловые, а также уменьшение размера полиэтиленовой составляющей блока-замедлителя. 2 з.п. ф-лы, 4 ил.
1. Источник тепловых нейтронов, содержащий источник быстрых нейтронов и конвертер, отличающийся тем, что блок-замедлитель быстрых нейтронов в виде полого куба выполнен из полиэтилена, внутри блока-замедлителя установлен конвертер, между торцевой поверхностью конвертера и внутренней поверхностью блока-замедлителя размещен слой полиэтилена с образованием полости, на поверхности блока-замедлителя последовательно расположены конвертер-отражатель, слой защиты от гамма-излучения, слой защиты для поглощения тепловых и быстрых нейтронов.
2. Источник тепловых нейтронов по п.1, отличающийся тем, что конвертер-отражатель выполнен из свинца, слой защиты от гамма-излучения выполнен из висмута, слой защиты для поглощения тепловых и быстрых нейтронов выполнен из борированного полиэтилена.
3. Источник тепловых нейтронов по п.1, отличающийся тем, что полость внутри блока-замедлителя лежит в диапазоне от 1×1×1 см до 10×10×10 см, а центр полости совпадает с максимумом плотности потока тепловых нейтронов в отсутствии полости.
ОБЛУЧАТЕЛЬНОЕ УСТРОЙСТВО ДЛЯ НЕЙТРОННО-ЗАХВАТНОЙ ТЕРАПИИ НА ЯДЕРНОМ РЕАКТОРЕ | 2003 |
|
RU2252798C2 |
РЕНТГЕНОВСКИЙ МИКРОСКОП | 2002 |
|
RU2239822C2 |
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ПОЛЯ РАДИАЦИОННОГО НАГРУЖЕНИЯ ОБЪЕКТОВ ПРИ ИХ ИСПЫТАНИИ НА РАДИАЦИОННУЮ СТОЙКОСТЬ | 2005 |
|
RU2284068C1 |
Устройство для нейтронно-активационного анализа | 1986 |
|
SU1666066A1 |
US 4599515 А, 08.07.1986 | |||
US 5028789 A, 02.07.1991. |
Авторы
Даты
2009-07-20—Публикация
2007-12-06—Подача