СПОСОБ ИНТЕНСИФИКАЦИИ ПРИТОКА ИЗ ПЛАСТА ПОНИЖЕНИЕМ УРОВНЯ СКВАЖИННОЙ ЖИДКОСТИ НОВЫХ И ОТРЕМОНТИРОВАННЫХ НЕФТЯНЫХ ФОНТАННЫХ СКВАЖИН С ПОСЛЕДУЮЩИМ ПОДДЕРЖАНИЕМ СТАТИЧЕСКОГО УРОВНЯ Российский патент 2009 года по МПК E21B43/18 

Описание патента на изобретение RU2366809C1

Изобретение относится к области нефтегазодобывающей промышленности, а именно к способам интенсификации притока пластового флюида из пласта новых и отремонтированных добывающих нефтяных, газовых и газоконденсатных скважин, и может быть использовано при освоении и интенсификации притока нефтяных, газовых и газоконденсатных скважин путем понижения гидростатического уровня жидкости в затрубном пространстве колонны насосно-компрессорных труб и последующего поддержания уровня на определенной отметке.

Известен способ вызова притока из пласта понижением уровня скважинной жидкости, включающий создание депрессии на призабойную зону пласта в пробуренной и обсаженной скважине с колонной насосно-компрессорных труб в ней путем снижения уровня скважинной жидкости ее вытеснением газовой средой, закачиваемой в затрубное пространство колонны насосно-компрессорных труб (см. патент РФ №2095560, МПК Е21В 43/27, 1997 г.).

Однако известный способ вызова притока из пласта имеет следующие недостатки:

- незначительное увеличение производительности притока пластового флюида,

- обладает достаточно высоким забойным давлением,

- недостаточная эффективность поддержания постоянного газового воздействия на продуктивный пласт в процессе дальнейшей эксплуатации скважины,

- низкий уровень пожаробезопасности проводимых на скважине работ.

Задачей изобретения является создание способа интенсификации притока из пласта понижением уровня скважинной жидкости новых и отремонтированных нефтяных фонтанных скважин с последующим поддержанием статического уровня.

Техническим результатом является снижение забойного давления и интенсификация притока пластового флюида, а также повышение эффективности поддержания постоянного газового воздействия на продуктивный пласт при одновременном значительном повышении уровня пожаробезопасности проводимых на скважине работ.

Технический результат при осуществлении изобретения достигается тем, что в предложен способ интенсификации притока из пласта понижением уровня скважинной жидкости новых и отремонтированных нефтяных фонтанных скважин с последующим поддержанием статического уровня, включающий создание депрессии на призабойную зону пласта в пробуренной и обсаженной скважине с колонной насосно-компрессорных труб в ней путем снижения уровня скважинной жидкости вытеснением ее газовой средой, закачиваемой в затрубное пространство колонны насосно-компрессорных труб, при этом в качестве газовой среды в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины закачивают смесь азота с диоксидом углерода, смесь гелия с диоксидом углерода, смесь аргона с диоксидом углерода, диоксид углерода или тетрафторэтан (СH2FСF3), осуществляют воздействие на заполняющую жидкость затрубного пространства колонны насосно-компрессорных труб скважины закачиваемым газом под давлением 150-600 кгс/см2 и производительностью подачи закачиваемого газа 100-1200 м3/час с последующим вытеснением скважинной жидкости закачиваемым газом в линии подачи газа до башмака подъемных труб и понижением плотности газожидкостной смеси с одновременным повышением до устья уровня скважинной жидкости и выбросом ее части, при этом пусковое давление закачиваемого газа снижают, затем в процессе снижения уровня скважинной жидкости в линии подачи закачиваемого газа до башмака подъемных труб и повышения уровня газожидкостной смеси в подъемных трубах до устья монотонно увеличивают давление закачиваемого газа до значения пускового давления, при этом пусковое давление закачиваемого газа предварительно рассчитывают по формуле

,

где h - глубина погружения труб под статический уровень, м,

р - плотность жидкости, т/м3,

g - ускорение силы тяжести, м/сек2,

D - внутренний диаметр эксплуатационной колонны, мм

d - внутренний диаметр подъемных труб, мм,

расстояние от устья скважины до места установки первого клапана рассчитывают по формуле

где L - расстояние от устья скважины до места установки первого клапана, м

h ст - расстояние от устья скважины до статического уровня, м,

Р max - максимальное давление закачиваемого газа, МПа.

ρ - плотность жидкости, т/м3,

максимальное давление закачиваемого газа рассчитывают с учетом глубины установки пускового клапана по формуле

где Р max - максимальное давление закачиваемого газа, МПа

ρ - плотность жидкости, т/м3,

g - ускорение силы тяжести, м/сек2,

D - внутренний диаметр эксплуатационной колонны, мм,

d - внутренний диаметр подъемных труб, мм,

L - расстояние от устья скважины до места установки

первого клапана, м,

h ст - расстояние от устья скважины до статического уровня, м,

при этом наибольшее пусковое давление закачиваемого газа в скважине превышает рабочее давление закачки закачиваемого газа в процессе штатной эксплуатации скважины. При этом в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины закачивают в качестве газовой среды смесь азота с диоксидом углерода, содержащую от 10 до 90 объемных % диоксида углерода. При этом в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины закачивают в качестве газовой среды смесь гелия с диоксидом углерода, содержащую от 10 до 90 объемных % диоксида углерода. При этом в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины закачивают в качестве газовой среды смесь аргона с диоксидом углерода, содержащую от 10 до 90 объемных % диоксида углерода. При этом на предварительно закаченную в скважину «подушку» газовой среды дополнительно закачивают нефть до достижения закаченной газовой средой башмака насосно-компрессорных труб и получения «прохвата», при этом давление столба закачиваемой нефти рассчитывают по формуле

,

где ρ - плотность жидкости, т/м3,

Н - высота столба нефти.

Среди существенных признаков, характеризующих способ интенсификации притока из пласта понижением уровня скважинной жидкости новых и отремонтированных нефтяных фонтанных скважин с последующим поддержанием статического уровня, отличительными являются:

- закачивание в качестве газовой среды в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины смеси азота с диоксидом углерода, смеси гелия с диоксидом углерода, смеси аргона с диоксидом углерода, диоксида углерода или тетрафторэтана (СH2FCF3),

- осуществление воздействия на заполняющую жидкость затрубного пространства колонны насосно-компрессорных труб скважины закачиваемым газом под давлением 150-600 кгс/см2 и производительностью подачи закачиваемого газа 100-1200 м3/час,

- вытеснение скважинной жидкости закачиваемым газом в линии подачи газа до башмака подъемных труб и понижение плотности газожидкостной смеси с одновременным повышением до устья уровня скважинной жидкости и выбросом ее части, при этом пусковое давление закачиваемого газа снижают,

- в процессе снижения уровня скважинной жидкости в линии подачи закачиваемого газа до башмака подъемных труб и повышения уровня газожидкостной смеси в подъемных трубах до устья монотонное увеличение давления закачиваемого газа до значения пускового давления,

- предварительный расчет пускового давления закачиваемого газа по формуле

,

где h - глубина погружения труб под статический уровень, м,

p - плотность жидкости, т/м3,

g - ускорение силы тяжести, м/сек2,

D - внутренний диаметр эксплуатационной колонны, мм,

d - внутренний диаметр подъемных труб, мм,

- расчет расстояния от устья скважины до места установки первого клапана по формуле

где L - расстояние от устья скважины до места установки первого клапана, м,

h ст - расстояние от устья скважины до статического уровня, м,

Р max - максимальное давление закачиваемого газа, МПа.

ρ - плотность жидкости, т/м3,

- расчет максимального давления закачиваемого газа с учетом глубины установки пускового клапана по формуле

где Р max - максимальное давление закачиваемого газа, МПа

ρ - плотность жидкости, т/м3,

g - ускорение силы тяжести, м/сек2,

D - внутренний диаметр эксплуатационной колонны, мм,

d - внутренний диаметр подъемных труб, мм,

L - расстояние от устья скважины до места установки первого клапана, м

h ст - расстояние от устья скважины до статического уровня, м,

при этом наибольшее пусковое давление закачиваемого газа в скважине превышает рабочее давление закачки закачиваемого газа в процессе штатной эксплуатации скважины,

- закачивание в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины в качестве газовой среды смеси азота с диоксидом углерода, содержащей от 10 до 90 объемных % диоксида углерода,

- закачивание в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины в качестве газовой среды смеси гелия с диоксидом углерода, содержащей от 10 до 90 объемных % диоксида углерода,

- закачивание в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины в качестве газовой среды смеси аргона с диоксидом углерода, содержащей от 10 до 90 объемных % диоксида углерода,

- дополнительная закачка нефти на предварительно закаченную в скважину «подушку» закачиваемого газа до достижения закачиваемым газом башмака насосно-компрессорных труб и получения «прохвата», причем давление столба нефти рассчитывают по формуле

,

где ρ - плотность жидкости, т/м3,

Н - высота столба нефти.

Способ осуществляется следующим образом.

Перед пуском скважина заполнена жидкостью (дегазированной нефтью, жидкостью глушения или водой), уровень которой соответствует пластовому давлению. Проводят вытеснение жидкости продавкой рабочим газом, причем в качестве рабочего газа в заполненное водой затрубное пространство колонны насосно-компрессорных труб скважины закачивают смесь азота с диоксидом углерода, смесь гелия с диоксидом углерода, смесь аргона с диоксидом углерода, диоксид углерода или тетрафторэтан (СН2FСF3), при этом смесь азота с диоксидом углерода содержит от 10 до 90 объемных % диоксида углерода, смесь гелия с диоксидом углерода содержит от 10 до 90 объемных % диоксида углерода и смесь аргона с диоксидом углерода содержит от 10 до 90 объемных % диоксида углерода. Осуществляют воздействие на заполняющую жидкость затрубного пространства колонны насосно-компрессорных труб скважины закачиваемым газом под давлением 150-600 кгс/см2 и производительностью подачи газа 100-1200 м3/час с последующим вытеснением скважинной жидкости закачиваемым газом в линии подачи газа до башмака подъемных труб и понижением плотности газожидкостной смеси с одновременным повышением до устья уровня скважинной жидкости и выбросом ее части.

Пусковое давление закачиваемого газа предварительно рассчитывают по формуле

где h - глубина погружения труб под статический уровень, м

p - плотность жидкости, т/м3

g - ускорение силы тяжести, м/сек2

D - внутренний диаметр эксплуатационной колонны, мм

d - внутренний диаметр подъемных труб, мм.

Наибольшее пусковое давление закачиваемого газа в скважине превышает рабочее давление закачки газа в процессе штатной эксплуатации скважины.

Пусковое давление закачиваемого газа снижают и затем монотонно увеличивают давление газа до значения пускового давления в процессе снижения уровня скважинной жидкости в линии подачи закачиваемого газа до башмака подъемных труб и повышения уровня газожидкостной смеси в подъемных трубах до устья.

Расстояние от устья скважины до места установки первого клапана рассчитывают по формуле

где L - расстояние от устья скважины до места установки первого клапана, м,

h ст - расстояние от устья скважины до статического уровня, м,

Р max - максимальное давление закачиваемого газа, МПа,

ρ - плотность жидкости, т/м3.

Максимальное давление закачиваемого газа рассчитывают с учетом глубины установки пускового клапана по формуле

где Р max - максимальное давление нейтрального газа, МПа,

ρ - плотность жидкости, т/м3,

g - ускорение силы тяжести, м/сек2,

D - внутренний диаметр эксплуатационной колонны, мм,

d - внутренний диаметр подъемных труб, мм,

L - расстояние от устья скважины до места установки первого клапана, м,

h ст - расстояние от устья скважины до статического уровня, м.

В случае если расчетное пусковое давление превышает давление опрессовки эксплуатируемой колонны, то для предотвращения разрыва колонны на предварительно закаченную в скважину «подушку» закаченного газа дополнительно закачивают в скважину нефть до достижения закаченным газом башмака насосно-компрессорных труб и получения «прохвата», при этом давление столба нефти рассчитывают по формуле

,

где ρ - плотность жидкости, т/м3,

H - высота столба нефти.

Экспериментальные исследования и практика эксплуатации предложенного способа интенсификации притока из пласта понижением уровня скважинной жидкости новых и отремонтированных нефтяных фонтанных скважин с последующим поддержанием статического уровня показали его высокую эффективность. С использованием всех существенных признаков предложенного способа достигнуто снижение забойного давления, значительно интенсифицирован приток пластового флюида, а также достигнуто повышение эффективности поддержания постоянного газового воздействия на продуктивный пласт. При этом одновременно значительно повышен уровень пожаробезопасности проводимых на скважине работ.

В таблице 1 приведены технологические параметры закачиваемого газа и полученный технический результат.

Реализация предложенного способа интенсификации притока из пласта понижением уровня скважинной жидкости новых и отремонтированных нефтяных фонтанных скважин с последующим поддержанием статического уровня иллюстрируется следующими примерами осуществления.

Пример 1. Провели работы по интенсификации добычи скважины с диаметром колонны 168 мм с учетом статического уровня скважинной жидкости, пластового давления, забойного давления, плотности нефти, обводненности, типа коллектора, пористости и проницаемости, начального и настоящего дебита, глубины текущего забоя и давления опрессовки эксплуатационной колонны.

На скважине смонтировали и заземлили газификационную установку, например АГУ-2М, обвязали ее с затрубным пространством скважины с использованием запорного и газосбросного вентилей, предохранительного и обратного клапанов, манометров и соединительных штуцеров. Затем опрессовали линию нагнетания нейтрального газа на полуторакратное рабочее давление. В качестве рабочего газа использовали азот. Проверили работу системы газификационной установки контрольным включением.

С учетом всех технологических характеристик данной скважины предварительно рассчитали по предложенной в способе методике пусковое давление, расстояние от устья скважины до места установки первого клапана, максимальное давление азота с учетом глубины установки пускового клапана.

Закачкой в затрубное пространство скважины аргона с 50 об.% диоксида углерода под давлением 150 кгс/см2 и производительностью 100 м3/час создали депрессию на призабойную зону пласта в пробуренной и обсаженной скважине с колонной насосно-компрессорных труб в ней. Достигли снижения уровня скважинной жидкости вытеснением ее газовой средой и понижением плотности газожидкостной смеси с одновременным повышением до устья уровня скважинной жидкости и выбросом ее части. Получили «прохват» - выход из насосно-компрессорных труб газового пузыря. Снизили пусковое давление закаченного газа. Затем в процессе снижения уровня скважинной жидкости в линии подачи закаченного газа до башмака подъемных труб и повышения уровня газожидкостной смеси в подъемных трубах до устья монотонно увеличили давление закачиваемого газа до значения пускового давления.

Достигли интенсификации притока пластового флюида из пласта на 18%. При этом повышена эффективность поддержания постоянным газового воздействия на продуктивный пласт скважины при одновременном значительном повышении уровня пожаробезопасности проводимых на скважине работ.

Пример 2. Провели работы по освоению добычи скважины с диаметром колонны 168 мм с учетом статического уровня скважинной жидкости, пластового давления, забойного давления, плотности нефти, обводненности, типа коллектора, пористости и проницаемости, глубины текущего забоя и давления опрессовки вводимой в эксплуатацию колонны.

На скважине смонтировали и заземлили газификационную установку, например АГУ-2М, обвязали ее с затрубным пространством скважины с использованием запорного и газосбросного вентилей, предохранительного и обратного клапанов, манометров и соединительных штуцеров. Затем опрессовали линию нагнетания нейтрального газа на полуторакратное рабочее давление. В качестве рабочего газа использовали аргон. Проверили работу системы газификационной установки контрольным включением.

С учетом всех технологических характеристик данной скважины предварительно рассчитали по предложенной в способе методике пусковое давление, расстояние от устья скважины до места установки первого клапана, максимальное давление аргона с учетом глубины установки пускового клапана.

Закачкой в затрубное пространство скважины азота с 90 об.% диоксида углерода под давлением 600 кгс/см2 и производительностью 1200 м3/час создали депрессию на призабойную зону пласта в пробуренной и обсаженной скважине с колонной насосно-компрессорных труб в ней.

В связи с тем, что расчетное пусковое давление превысило давление опрессовки данной вводимой в эксплуатацию колонны, то для предотвращения разрыва колонны на предварительно закаченную в скважину «подушку» нейтрального газа закачали нефть до достижения нейтральным газом башмака насосно-компрессорных и получения «прохвата», причем давление столба нефти рассчитали по формуле

,

где ρ - плотность жидкости, т/м3,

H - высота столба нефти.

Достигли снижения уровня скважинной жидкости вытеснением ее газовой средой и понижением плотности газожидкостной смеси с одновременным повышением до устья уровня скважинной жидкости и выбросом ее части. Получили «прохват» - выход из насосно-компрессорных труб газового пузыря. Снизили пусковое давление аргона. Затем в процессе снижения уровня скважинной жидкости в линии подачи аргона до башмака подъемных труб и повышения уровня газожидкостной смеси в подъемных трубах до устья монотонно увеличили давление аргона до значения пускового давления.

Достигли интенсификации притока пластового флюида из пласта на 15%. При этом повышена эффективность поддержания постоянным газового воздействия на продуктивный пласт скважины при одновременном значительном повышении уровня пожаробезопасности проводимых на скважине работ.

Технологические параметры закачиваемого газа и полученный технический результат № мате
риала
Диаметр колонны, мм Вид и состав закачиваемого газа Параметры закачки газа Увеличение интенсивности притока нефти, % Эффективность поддержания постоянного воздействия на пласт Пожаро-безопасность
Давление, кгс/см Объем газа, м3/час 1 146 Аr+10 об. % СO2 150 100 15 высокая высокая 2 146 Ar+50 об. % СO2 400 600 18 высокая высокая 3 168 Аr+90 об. % СO2 600 1200 14 высокая высокая 4 168 Ar+10 об. % СO2 600 100 15 высокая высокая 5 146 Ar+50 об. % СO2 400 600 17 высокая высокая 6 168 Ar+90 об. % СO2 150 1200 16 высокая высокая 7 146 Ar+10 об. % СO2 400 100 18 высокая высокая 8 168 Ar+50 об. % СO2 400 600 17 высокая высокая 9 168 Ar+90 об. % СO2 600 1200 15 высокая высокая 10 146 Не+10 об. % СO2 150 100 14 высокая высокая 11 146 Не+50 об. % СO2 400 600 15 высокая высокая 12 168 Не+90 об. % СO2 600 1200 16 высокая высокая 13 168 Не+10 об. % СO2 600 100 15 высокая высокая 14 146 Не+50 об. % СO2 400 600 17 высокая высокая 15 168 Не+90 об. % СO2 150 1200 16 высокая высокая 16 146 Не+10 об. % СO2 400 100 18 высокая высокая 17 168 Не+50 об. % СO2 400 600 17 высокая высокая 18 168 Не+90 об. % СO2 600 1200 15 высокая высокая 19 168 N2+10 об. % СO2 150 100 14 высокая высокая 20 168 N2+50 об. % СO2 400 600 15 высокая высокая 21 146 N2+90 об. % СO2 600 1200 16 высокая высокая 22 146 N2+10 об. % СO2 600 100 15 высокая высокая 23 168 N2+50 об. % СO2 400 600 15 высокая высокая 24 168 N2+90 об. % СO2 150 1200 14 высокая высокая 25 146 N2+10 об. % СO2 400 100 15 высокая высокая 26 168 N2+50 об. % СO2 400 600 16 высокая высокая 27 146 N2+90 об. % СO2 600 1200 15 высокая высокая 28 168 СO2 150 100 17 высокая высокая 29 168 СO2 400 600 16 высокая высокая 30 146 СO2 600 1200 18 высокая высокая 31 146 CH2FCF3 600 100 18 высокая высокая 32 168 CH2FCF3 400 600 17 высокая высокая 33 168 CH2FCF3 150 1200 15 высокая высокая

Похожие патенты RU2366809C1

название год авторы номер документа
СПОСОБ ИНТЕНСИФИКАЦИИ ПРИТОКА ИЗ ПЛАСТА ПОНИЖЕНИЕМ УРОВНЯ СКВАЖИННОЙ ЖИДКОСТИ НОВЫХ И ОТРЕМОНТИРОВАННЫХ НЕФТЯНЫХ ФОНТАННЫХ СКВАЖИН С ПОСЛЕДУЮЩИМ ПОДДЕРЖАНИЕМ СТАТИЧЕСКОГО УРОВНЯ 2007
  • Колчин Андрей Владимирович
RU2330947C1
СПОСОБ ГАЗОКИСЛОТНОЙ ИНТЕНСИФИКАЦИИ ПРИТОКА НЕФТИ ИЗ ПЛАСТА ДОБЫВАЮЩИХ И НАГНЕТАТЕЛЬНЫХ НЕФТЯНЫХ СКВАЖИН 2008
  • Колчин Владимир Николаевич
  • Колчин Андрей Владимирович
RU2391499C2
СПОСОБ ОСВОЕНИЯ СКВАЖИНЫ 1998
  • Сологуб Р.А.
  • Тупысев М.К.
  • Вяхирев В.И.
  • Гереш П.А.
  • Добрынин Н.М.
  • Ремизов В.В.
  • Завальный П.Н.
  • Черномырдин А.В.
  • Черномырдин В.В.
  • Минигулов Р.М.
  • Чугунов Л.С.
RU2127805C1
СПОСОБ ГЛУШЕНИЯ ГАЗОВОЙ СКВАЖИНЫ 2006
  • Обиднов Виктор Борисович
  • Кустышев Александр Васильевич
  • Ткаченко Руслан Владимирович
  • Зозуля Григорий Павлович
  • Кряквин Дмитрий Александрович
  • Кустышев Игорь Александрович
RU2347066C2
СПОСОБ ГЛУШЕНИЯ ЭКСПЛУАТАЦИОННОЙ СКВАЖИНЫ 1995
  • Мамедов Б.А.
  • Шахвердиев А.Х.
  • Галеев Ф.Х.
  • Чукчеев О.А.
  • Матвеев К.Л.
  • Мандрик И.Э.
  • Зазирный Д.В.
  • Гуменюк В.А.
RU2054118C1
СПОСОБ ОСВОЕНИЯ СКВАЖИН 1994
  • Федосеев А.В.
  • Иванов В.В.
  • Марченко Г.М.
RU2072036C1
СПОСОБ РАЗДЕЛЬНОГО ПОДЪЕМА ПРОДУКЦИИ ДОБЫВАЮЩИХ СКВАЖИН 1992
  • Мамлеев Р.Ш.
  • Закиров С.Н.
  • Лембумба М.А.
  • Харламов В.Р.
  • Ленчицкий В.С.
  • Куц Ю.А.
RU2054528C1
СПОСОБ ВОЗБУЖДЕНИЯ СКВАЖИНЫ ПУТЕМ ПЕРЕМЕННЫХ ДАВЛЕНИЙ 1994
  • Говдун В.В.
  • Димитров И.Е.
  • Кучеровский В.М.
  • Крашенинников Л.И.
RU2090748C1
СПОСОБ ОСВОЕНИЯ СКВАЖИНЫ С УРОВНЕМ ПЛАСТОВОЙ ЖИДКОСТИ НИЖЕ БАШМАКА НАСОСНО-КОМПРЕССОРНЫХ ТРУБ В УСЛОВИЯХ АНОМАЛЬНО НИЗКИХ ПЛАСТОВЫХ ДАВЛЕНИЙ 1996
  • Шмельков В.Е.
  • Гасумов Рамиз Алиджавад Оглы
  • Романов В.В.
  • Козлов Н.Б.
  • Лексуков Ю.А.
RU2121567C1
СПОСОБ ГЛУШЕНИЯ ГАЗОВЫХ СКВАЖИН С КОНТРОЛЕМ ДАВЛЕНИЯ НА ЗАБОЕ 2019
  • Попов Николай Васильевич
RU2711131C1

Реферат патента 2009 года СПОСОБ ИНТЕНСИФИКАЦИИ ПРИТОКА ИЗ ПЛАСТА ПОНИЖЕНИЕМ УРОВНЯ СКВАЖИННОЙ ЖИДКОСТИ НОВЫХ И ОТРЕМОНТИРОВАННЫХ НЕФТЯНЫХ ФОНТАННЫХ СКВАЖИН С ПОСЛЕДУЮЩИМ ПОДДЕРЖАНИЕМ СТАТИЧЕСКОГО УРОВНЯ

Изобретение относится к области нефтегазодобывающей промышленности, а именно к способам интенсификации притока пластового флюида из пласта новых и отремонтированных добывающих нефтяных, газовых и газоконденсатных скважин, и может быть использовано при освоении и интенсификации притока нефтяных, газовых и газоконденсатных скважин путем понижения гидростатического уровня жидкости в затрубном пространстве колонны насосно-компрессорных труб и последующего поддержания уровня на определенной отметке. Обеспечивает повышение эффективности способа - интенсификации, поддержания постоянным газового воздействия на продуктивный пласт при одновременном повышении уровня пожаробезопасности проводимых на скважине работ. Сущность изобретения: способ включает создание депрессии на призабойную зону пласта в пробуренной и обсаженной скважине с колонной насосно-компрессорных труб в ней путем снижения уровня скважинной жидкости вытеснением ее газовой средой, закачиваемой в затрубное пространство колонны насосно-компрессорных труб. При этом в качестве газовой среды в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины закачивают смесь азота с диоксидом углерода, смесь гелия с диоксидом углерода, смесь аргона с диоксидом углерода, диоксид углерода или тетрафторэтан. Осуществляют воздействие на заполняющую жидкость затрубного пространства колонны насосно-компрессорных труб скважины закачиваемым газом под давлением 150-600 кгс/см2 и производительностью подачи нейтрального газа 100-1200 м3/час с последующим вытеснением скважинной жидкости закачиваемым газом в линии подачи газа до башмака подъемных труб и понижением плотности газожидкостной смеси с одновременным повышением до устья уровня скважинной жидкости и выбросом ее части. При этом пусковое давление закачиваемого газа снижают. Затем в процессе снижения уровня скважинной жидкости в линии подачи закачиваемого газа до башмака подъемных труб и повышения уровня газожидкостной смеси в подъемных трубах до устья монотонно увеличивают давление закачиваемого газа до значения пускового давления. Пусковое давление закачиваемого газа и его максимальное давление рассчитывают по аналитическим выражениям. При этом наибольшее пусковое давление закачиваемого газа в скважине превышает рабочее давление закачки закачиваемого газа в процессе штатной эксплуатации скважины. 4 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 366 809 C1

1. Способ интенсификации притока из пласта понижением уровня скважинной жидкости новых и отремонтированных нефтяных фонтанных скважин с последующим поддержанием статического уровня, включающий создание депрессии на призабойную зону пласта в пробуренной и обсаженной скважине с колонной насосно-компрессорных труб в ней путем снижения уровня скважинной жидкости вытеснением ее газовой средой, закачиваемой в затрубное пространство колонны насосно-компрессорных труб, отличающийся тем, что в качестве газовой среды в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины закачивают смесь азота с диоксидом углерода, смесь гелия с диоксидом углерода, смесь аргона с диоксидом углерода, диоксид углерода или тетрафторэтан, осуществляют воздействие на заполняющую жидкость затрубного пространства колонны насосно-компрессорных труб скважины закачиваемым газом под давлением 150-600 кгс/см2 и производительностью подачи закачиваемого газа 100-1200 м3/ч с последующим вытеснением скважинной жидкости закачиваемым газом в линии подачи газа до башмака подъемных труб и понижением плотности газожидкостной смеси с одновременным повышением до устья уровня скважинной жидкости и выбросом ее части, при этом пусковое давление закачиваемого газа снижают, затем в процессе снижения уровня скважинной жидкости в линии подачи закачиваемого газа до башмака подъемных труб и повышения уровня газожидкостной смеси в подъемных трубах до устья монотонно увеличивают давление закачиваемого газа до значения пускового давления, при этом пусковое давление закачиваемого газа предварительно рассчитывают по формуле

где h - глубина погружения труб под статический уровень, м;
ρ - плотность жидкости, т/м3;
g - ускорение силы тяжести, м/с2;
D - внутренний диаметр эксплуатационной колонны, мм;
d - внутренний диаметр подъемных труб, мм,
расстояние от устья скважины до места установки первого клапана рассчитывают по формуле

где L - расстояние от устья скважины до места установки первого клапана, м;
hст - расстояние от устья скважины до статического уровня, м;
Pmax - максимальное давление закачиваемого газа, МПа;
максимальное давление закачиваемого газа рассчитывают с учетом глубины установки пускового клапана по формуле

где Pmax - максимальное давление закачиваемого газа, МПа,
при этом наибольшее пусковое давление закачиваемого газа в скважине превышает рабочее давление закачки закачиваемого газа в процессе штатной эксплуатации скважины.

2. Способ по п.1, отличающийся тем, что в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины закачивают в качестве газовой среды смесь азота с диоксидом углерода, содержащую от 10 до 90 об.% диоксида углерода.

3. Способ по п.1, отличающийся тем, что в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины закачивают в качестве газовой среды смесь гелия с диоксидом углерода, содержащую от 10 до 90 об.% диоксида углерода.

4. Способ по п.1, отличающийся тем, что в заполненное жидкостью затрубное пространство колонны насосно-компрессорных труб скважины закачивают в качестве газовой среды смесь аргона с диоксидом углерода, содержащую от 10 до 90 об.% диоксида углерода.

5. Способ по п.1, отличающийся тем, что на предварительно закачанную в скважину «подушку» газовой среды дополнительно закачивают нефть до достижения закачанной газовой средой башмака насосно-компрессорных труб и получения «прохвата», при этом давление столба закачиваемой нефти (Рж) рассчитывают по формуле

где Н - высота столба нефти.

Документы, цитированные в отчете о поиске Патент 2009 года RU2366809C1

СПОСОБ НЕСТАЦИОНАРНОГО ИЗВЛЕЧЕНИЯ НЕФТИ ИЗ ПЛАСТА 2004
  • Белов Владимир Григорьевич
  • Горшенин Андрей Юрьевич
  • Иванов Владимир Анатольевич
  • Козловский Владимир Сергеевич
  • Мусаев Хасан Цицоевич
  • Федосеев Анатолий Иванович
  • Шелехов Александр Леонидович
RU2288352C2
СПОСОБ ОСВОЕНИЯ СКВАЖИН 2000
  • Коваленко Ю.Ф.
  • Кулинич Ю.В.
  • Карев В.И.
  • Титоров М.Ю.
  • Лесничий В.Ф.
  • Самохвалов Г.В.
RU2179239C2
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ СКВАЖИНЫ 1997
  • Лузянин Г.С.
  • Тымошев Д.Н.
  • Никонов Н.П.
  • Просвирнов Ю.Н.
  • Васьков А.С.
  • Тарасов В.В.
  • Швецова З.С.
  • Просвирин А.А.
  • Ахапкин М.Ю.
  • Кручик Л.У.
RU2095560C1
СПОСОБ ПЕРЕВОДА СКВАЖИН НА ОПТИМАЛЬНО ЭФФЕКТИВНЫЙ РЕЖИМ ЭКСПЛУАТАЦИИ 2005
  • Белов Владимир Григорьевич
  • Горшенин Андрей Юрьевич
  • Иванов Владимир Анатольевич
  • Козловский Владимир Сергеевич
  • Мусаев Хасан Цицоевич
  • Федосеев Анатолий Иванович
RU2289019C1
СПОСОБ ИНТЕНСИФИКАЦИИ ДОБЫЧИ НЕФТИ 2004
  • Савинных Ю.А.
  • Музипов Х.Н.
  • Савиных Р.И.
RU2264532C1
СПОСОБ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ 1992
  • Афанасьев Владимир Александрович
  • Гордон Иосиф Абрамович
  • Семченко Петр Тимофеевич
RU2082879C1
СПОСОБ УВЕЛИЧЕНИЯ ПРОДУКТИВНОСТИ НЕФТЯНОЙ СКВАЖИНЫ 1998
  • Максутов Р.А.
  • Мартынов В.Н.
RU2144135C1
US 5183583 A, 02.02.1993.

RU 2 366 809 C1

Авторы

Колчин Андрей Владимирович

Даты

2009-09-10Публикация

2008-04-01Подача