ДОЗАТОР ГАЗА Российский патент 2009 года по МПК G01F11/00 

Описание патента на изобретение RU2366903C1

Изобретение относится к дозаторам газа и обеспечивает повышение точности и надежности дозирования малых объемов газов.

Известен дозатор газа (см. а.с. №1620849, МКИ G01F 11/00, 1991, Бюл №2), содержащий две сообщенные между собой полости, патрубки входа и выхода газа, установленные между полостями с возможностью вертикального перемещения перегородки.

Недостатком является невозможность поддержания точности и надежности дозирования при изменяющемся давлении источника газа.

Известен дозатор газа (см. патент РФ №2273002, МПК G01F 11/00, 2006, Бюл №9), включающий две сообщенные между собой полости, патрубки входа и выхода газа, установленную между полостями с возможностью вертикального перемещения перегородку, при этом перегородка выполнена из магнитной жидкости, расположенной между патрубками входа и выхода газа, удерживается через воздушный зазор магнитным полем кольцевого магнита, а ее свободные поверхности имеют форму вогнутого мениска, определяемого неоднородностью магнитного поля в радиальном направлении, причем внутри кольцевого магнита соосно с ним размещена катушка индуктивности.

Недостатком является невозможность ручного адекватного регулирования характера перемещения кольцевого магнита на колебания давления газа в его источнике.

Технической задачей предлагаемого изобретения является синхронизация процесса дозировки газа между полостями в условиях изменяющихся колебаний его в источнике путем автоматизации движения кольцевого магнита посредством взаимосвязи его привода с электродвигателем и регулятором давления.

Технический результат по поддержанию постоянства точности и надежности дозировки поступления газа в условиях колебания давления в его источнике достигается тем, что дозатор газа включает две сообщенные между собой полости, патрубки входа и выхода газа, установленную между полостями с возможностью вертикального перемещения перегородку, при этом перегородка выполнена из магнитной жидкости, расположенной между патрубками входа и выхода газа, удерживается через воздушный зазор магнитным полем кольцевого магнита, а ее свободные поверхности имеют форму вогнутого мениска, определяемого неоднородностью магнитного поля в радиальном направлении, причем внутри кольцевого магнита соосно с ним размещена катушка индуктивности, дозатор газа снабжен приводом кольцевого магнита, включающим электродвигатель, гибкую передачу и регулятор давления, содержащий последовательно соединенные блок сравнения, блок задания, электронный усилитель с блоком нелинейной обратной связи и магнитный усилитель с выпрямителями на выходах, установленный между электродвигателем и гибкой передачей, регулятором скорости вращения привода кольцевого магнита, представляющим собой блок порошковых электромагнитных муфт, подключенных к магнитному усилителю и датчиком давления, размещенным в патрубке входа газа и соединенным с блоком сравнения регулятора давления.

На чертеже схематически изображен дозатор газа.

Дозатор содержит полость 1, являющуюся источником газа, и полость 2, в которую дозируется малыми объемами газ из полости 1. Между патрубком входа 3 и выхода 4 дозируемого газа размещена перегородка 5, выполненная из магнитной жидкости, удерживаемая магнитным полем кольцевого магнита 6 с возможностью вертикального перемещения совместно с кольцевым магнитом 6 благодаря воздушному зазору 7. Обе свободные поверхности 8 и 9 магнитной жидкости, в качестве которой выполнена перегородка 5, имеют форму вогнутого мениска, что обусловлено неоднородностью магнитного поля в радиальном направлении.

Дозатор газа снабжен приводом кольцевого магнита 6, включающим электродвигатель 10, гибкую передачу 11 (например, ременную) и регулятор давления 12, содержащий последовательно соединенные блок сравнения 13, блок задания 14, электронный усилитель 15 с блоком нелинейной обратной связи 16, магнитный усилитель 17 с выпрямителями на выходах, установленным между электродвигателем 10 и гибкой передачей 11, регулятором 18 скорости перемещения кольцевого магнита 6, представляющим собой блок порошковых электромагнитных муфт, подключенных к магнитному усилителю 17, и датчиком давления 19 размещенным в патрубке входа газа и соединенным с блоком сравнения 13 регулятора давления 12. Выход блока сравнения 13 соединен с входом электромагнитного усилителя 15, а выход его соединен со входом магнитного усилителя 17, выпрямители на выходах которого подключены к регулятору 18 скорости перемещения кольцевого магнита 6.

Дозатор газа работает следующим образом. Газ из полости 1 поступает к перегородке 5, выполненной из магнитной жидкости, и контактирует со свободной поверхностью 8, имеющей форму вогнутого мениска. При заданных условиях процесса дозировки, например, 0,1% от объема источника газа полости 1 электродвигатель 10 через блок порошковых электромагнитных муфт регулятора скорости 18 и гибкую передачу 11 вертикально перемещает перегородку 5, и под воздействием смещения магнитной системы кольцевого магнита 6 осуществляется принудительный разрыв магнитной жидкости-перегородки 5, и заданный малый объем дозируемого газа из полости 1 через патрубок 3 поверхности 8, имеющей вид вогнутого мениска, перегородки 5 поступает через поверхность 9, имеющую вид вогнутого мениска в патрубок 4 и далее в полость 2.

При колебании давления в полости 1, например, в сторону уменьшения для условий нормированной дозировки газа поступает сигнал с датчика давления 19, установленного в патрубке входа 3, превышающий нормированный сигнал блока 14 задания, и на выходе блока 13 сравнения появится сигнал отрицательной полярности, поступающий на вход электронного усилителя 15, одновременно с сигналом отрицательной обратной связи от блока 16 нелинейной обратной связи. Сигнал с выхода электронного усилителя 15 поступает на вход магнитного усилителя 17, где он усиливается по мощности, выпрямляется и поступает на обмотку блока порошковых электромагнитных муфт регулятора 18 скорости вращения электродвигателя 10. Отрицательная полярность сигнала электронного усилителя 15 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 17, тем самым уменьшая передаваемый блоком порошковых электромагнитных муфт момент от электродвигателя 10 к гибкой передаче 11. В результате перегородка 5 перемещается на меньшую величину для осуществления принудительного разрыва по сравнению с нормированным давлением, тем самым уменьшая объем источника газа полости 1 и соответственно увеличивая в ней давление, и, как следствие, поддерживает заданный расход дозируемого газа.

При колебании давления в полости 1 в сторону увеличения для условий нормированной дозировки газа поступает сигнал с датчика давления 19, установленного в патрубке входа 3, который имеет значение ниже нормированного значения сигнала блока 14 задания и на выходе блока 13 сравнения появится сигнал положительной полярности, поступающий на вход электронного усилителя 15. Положительная полярность сигнала электронного усилителя 15 вызывает увеличение тока возбуждения на выходе магнитного усилителя 17, и тем самым увеличивается передаваемый блоком порошковых электромагнитных муфт момент от электродвигателя 10 к гибкой передаче 11. В результате кольцевой магнит 6 с катушкой индуктивности благодаря воздушному зазору 7 свободно перемещается вертикально вверх, тем самым увеличивая объем газа в полости 1 и уменьшая в ней давление, соответственно поддерживая заданный расход дозируемого воздуха.

Оригинальность предлагаемого изобретения заключается в повышении точности и надежности дозировки газа в условиях изменяющегося его давления, которое достигается путем автоматизации процесса вертикального перемещения кольцевого магнита с перегородкой из магнитной жидкости за счет снабжения дозатора электродвигателем с гибкой передачей и регулятором давления, обеспечивающим взаимосвязь регулятора скорости и регистрируемого посредством датчика изменения давления. В результате обеспечивается равномерное колебательное перемещение магнитной системы адекватно характеру изменения давления в источнике газа с последующей нормированной его дозировкой.

Похожие патенты RU2366903C1

название год авторы номер документа
МЕМБРАННЫЙ НАСОС 2009
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Полунин Вячеслав Михайлович
  • Ряполов Петр Алексеевич
  • Коварда Владимир Васильевич
  • Евглевский Станислав Сергеевич
  • Новиков Валерий Андреевич
RU2384737C1
МЕМБРАННЫЙ НАСОС 2010
  • Емельянов Сергей Геннадьевич
  • Полунин Вячеслав Михайлович
  • Кобелев Николай Сергеевич
  • Моржавин Александр Вячеславович
  • Шабанова Ирина Александровна
  • Лобова Ольга Вячеславовна
RU2425251C1
САТУРАТОР ДЛЯ СВЕКЛОСАХАРНОГО ПРОИЗВОДСТВА 2011
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Таныгина Лилия Сергеевна
  • Павлова Елена Викторовна
  • Поливанова Татьяна Владимировна
  • Кобелев Владимир Николаевич
RU2483117C2
ДОЗАТОР ГАЗА 2004
  • Кобелев Николай Сергеевич
  • Полунин Вячеслав Михайлович
  • Карпова Галина Вячеславовна
  • Пауков Владимир Митрофанович
  • Воронин Владислав Вячеславович
RU2273002C2
РОТАЦИОННАЯ ПУЛЬПОЛОВУШКА ДЛЯ ОЧИСТКИ ДИФФУЗИОННОГО СОКА 2004
  • Кобелев Николай Сергеевич
  • Лопин Вячеслав Николаевич
  • Кобелев Владимир Николаевич
  • Титов Дмитрий Витальевич
  • Шевелева Елена Сергеевна
RU2280694C1
Ротационная пульполовушка для очистки диффузионного сока 2019
  • Кобелев Николай Сергеевич
  • Емельянов Алексей Сергеевич
  • Кобелев Владимир Николаевич
  • Жмакин Виталий Анатольевич
  • Аникеева Надежда Петровна
  • Поливанова Татьяна Владимировна
  • Рябцева Светлана Андреевна
RU2710728C1
РОТАЦИОННАЯ ПУЛЬПОЛОВУШКА ДЛЯ ОЧИСТКИ ДИФФУЗИОННОГО СОКА 2015
  • Щедрин Дмитрий Геннадьевич
  • Телегин Артем Александрович
  • Григорова Наталья Павловна
  • Кобелев Николай Сергеевич
  • Кобелев Владимир Николаевич
  • Свеженцев Виталий Сергеевич
  • Щедрина Галина Геннадьевна
RU2579218C1
Ротационная пульполовушка для очистки диффузионного сока 2018
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Кобелев Владимир Николаевич
  • Павлов Евгений Васильевич
  • Чепель Светлана Викторовна
  • Павлов Игорь Васильевич
  • Афанасьев Павел Андреевич
RU2688472C1
Ротационная пульполовушка для очистки диффузионного сока 2016
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Кобелев Владимир Николаевич
  • Фатьянова Елена Александровна
  • Бурыкина Оксана Владимировна
RU2643266C1
НАСОСНАЯ УСТАНОВКА 2011
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Морозов Виктор Андреевич
  • Морозов Александр Викторович
RU2456480C1

Реферат патента 2009 года ДОЗАТОР ГАЗА

Изобретение относится к области измерительной техники и направлено на повышение точности и надежности дозирования малых объемов газа за счет обеспечения синхронизации процесса дозирования газа между полостями в условиях изменяющихся колебаний его в источнике. Этот результат выполняется за счет того, что дозатор газа включает две сообщенные между собой полости, патрубки входа выхода газа, удерживаемую через воздушный зазор магнитным полем кольцевого магнита перегородку, свободные поверхности которой имеют форму вогнутого мениска, определяемого неоднородностью магнитного поля в радиальном направлении, причем внутри кольцевого магнита соосно с ним размещена катушка индуктивности. Согласно изобретению привод кольцевого магнита включает электродвигатель, гибкую передачу и регулятор давления, содержащий последовательно соединенные блок сравнения, блок задания, электронный усилитель с блоком нелинейной обратной связи и магнитный усилитель с выпрямителями на выходах, установленных между электродвигателем и гибкой передачей, регулятор скорости вращения привода кольцевого магнита, представляющий собой блок порошковых электромагнитных муфт, подключенных к магнитному усилителю, и датчик давления, размещенный в патрубке входа газа и соединенный с блоком сравнения регулятора давления. 1 ил.

Формула изобретения RU 2 366 903 C1

Дозатор газа, включающий две сообщенные между собой полости, патрубки входа и выхода газа, установленную между полостями с возможностью вертикального перемещения перегородку, при этом перегородка выполнена из магнитной жидкости, расположенной между патрубками входа и выхода газа, удерживается через воздушный зазор магнитным полем кольцевого магнита, а ее свободные поверхности имеют форму вогнутого мениска, определяемого неоднородностью магнитного поля в радиальном направлении, причем внутри кольцевого магнита соосно с ним размещена катушка индуктивности, отличающийся тем, что снабжен приводом кольцевого магнита, включающим электродвигатель, гибкую передачу и регулятор давления, содержащий последовательно соединенные блок сравнения, блок задания, электронный усилитель с блоком нелинейной обратной связи и магнитный усилитель с выпрямителями на выходах, установленным между электродвигателем и гибкой передачей, регулятором скорости вращения привода кольцевого магнита, представляющим собой блок порошковых электромагнитных муфт, подключенных к магнитному усилителю, и датчиком давления, размещенным в патрубке входа газа и соединенным с блоком сравнения регулятора давления.

Документы, цитированные в отчете о поиске Патент 2009 года RU2366903C1

ДОЗАТОР ГАЗА 2004
  • Кобелев Николай Сергеевич
  • Полунин Вячеслав Михайлович
  • Карпова Галина Вячеславовна
  • Пауков Владимир Митрофанович
  • Воронин Владислав Вячеславович
RU2273002C2
Устройство для непрерывного дозирования жидкости в затрубное пространство паровой скважины 1979
  • Шарапов Валентин Александрович
  • Фещенко Николай Иванович
  • Петришак Василий Степанович
  • Бутенко Анатолий Николаевич
SU926244A1
УНИВЕРСАЛЬНЫЙ ВЕРТИКАЛЬНЫЙ КЛАПАН ГАЛАНЦЕВА ДЛЯ РЕГУЛИРОВАНИЯ ВЫХОДА ГАЗООБРАЗНЫХ, ЖИДКИХ ИЛИ СЫПУЧИХ МАТЕРИАЛОВ ИЗ ТРУБЫ 1991
  • Галанцев Г.П.
  • Томашев В.Т.
  • Нагибин Г.Е.
RU2008250C1
СИСТЕМА И КАПСУЛА ДЛЯ ИЗГОТОВЛЕНИЯ НАПИТКА 2013
  • Кастеллани Андреа
RU2621390C2

RU 2 366 903 C1

Авторы

Емельянов Сергей Геннадьевич

Полунин Вячеслав Михайлович

Кобелев Николай Сергеевич

Родионова Анастасия Александровна

Карпова Галина Вячеславовна

Ряполов Петр Алексеевич

Даты

2009-09-10Публикация

2008-02-18Подача