ТУРБОВИНТОВЕНТИЛЯТОРНЫЙ ДВИГАТЕЛЬ Российский патент 2009 года по МПК F02K3/72 

Описание патента на изобретение RU2371598C2

Предлагаемое изобретение относится к машиностроению и может быть использовано как авиационный турбовинтовентиляторный двигатель, так и как газотурбинная наземная установка.

Известен турбовинтовой двигатель (см. Двухконтурные турбореактивные, турбовентиляторные и турбовинтовые двигатели. А.Л.Клячкин. Рижский институт инженеров гражданского воздушного флота имени Ленинского комсомола. Рига, 1963, стр.298, Фиг-IV г2 и стр.295), основными узлами которого являются:

1. Входное устройство.

2. Компрессор.

3. Камера сгорания.

4. Турбина.

5. Выхлопное (реактивное) сопло.

6. Воздушный винт.

7. Дифференциальный планетарный редуктор.

Недостатком этого двигателя является наличие вала, проходящего сквозь весь двигатель, что значительно усложняет его конструкцию: увеличивает размеры ступиц дисков компрессора и турбины, усложняет конструкцию опор. Наружный диаметр вала при этом ограничен конструктивно, что приводит к высоким оборотам для передачи необходимой мощности, при сохранении допустимых напряжений у вала. Длинные валы не жесткие, поэтому их практически невозможно точно отбалансировать. Поэтому очень трудно избавиться от вибраций и дефекта касания валов при эволюциях самолета (удар при приземлении, например).

Для одновальной турбины оптимальным является дифференциальный планетарный редуктор (см. Новости зарубежной науки и техники №11, 1988, стр.19, раздел «редуктор»).

Дифференциальные планетарные редуктора работают надежно только до тяги в 18 тонн. Это связано с тем, что сателлитные шестерни создают большие центробежные силы и изнашивают подшипники, на которых вращаются. К недостаткам данного редуктора можно отнести также большой расход масла, самый низкий к.п.д. среди шестеренчатых редукторов (к.п.д. низкий из-за того, что сателлитные шестерни вместе с корпусом, на котором они расположены, вращаются в воздушно-масляной среде). Дифференциальные планетарные редукторы чувствительны к качеству, температуре и давлению масла, смазывающего зубья и подшипники шестерен. В случае незначительного повышения температуры и падения давления масла редуктор разрушится немедленно. Из-за наличия венцовой шестерни с внутренними зубьями невозможно применение косозубых, шевронных и др. шестерен, что не позволяет уменьшить размеры редуктора. Известен патент Англии GB 594207, 05.11.1947, в котором описан турбовинтовой двигатель с двумя соосными винтами, в котором газогенератор, дезаксиально расположенный относительно них, служит в качестве привода вращения свободной биротативной турбины. Недостатком этого технического решения является невозможность промышленного применения. Двигатель GB 594207 имеет огромную площадь поперечного сечения, что создает большое сопротивление набегающему потоку воздуха. В связи с тем, что газовод расположен не по потоку воздуха, а поперек него, увеличиваются газодинамические потери. Невозможно также встроить газовод в самолет без аэродинамических потерь.

Наиболее близким к предлагаемому двигателю является реактивная силовая установка для самолетов (см. патент Англии №1020145, кл. F01G от 7 дек. 1964), содержащая по крайней мере два газогенератора, состоящих из осевого компрессора, камеры сгорания и турбины, расположенных вдоль общего потока воздуха, общего компрессора, подающего сжатый воздух индивидуальным компрессорам, общую турбину, вращаемую от выхлопных газов газогенераторов, которая вращает общий компрессор и сопло.

Недостатком такого двигателя является сложность конструкции.

Данный двигатель по конструкции можно сравнить с двухвальным газотурбинным двигателем такого же габарита, тяги и удельного расхода топлива.

Наличие у реактивного двигателя большого количества каскадов компрессора само по себе не дает существенных различий между ними по массе или характеристикам (см. Новости зарубежной науки и техники №11, 1988, стр.19, левый столбец, 20-23 строки сверху).

Так как газогенераторы находятся внутри воздушного потока, то они должны быть обтекаемыми, чтобы не создавать сопротивление воздушному потоку. Каждый газогенератор должен управляться агрегатами управления, которые негде расположить, разве что снаружи всего двигателя, что значительно увеличит поперечную площадь двигателя, что создаст большое сопротивление воздушному потоку при полете.

К недостаткам этого двигателя можно отнести также и необходимость точной синхронизации прохождения воздуха через газогенераторы.

В случае если один из газогенераторов синхронно не выйдет на заданный режим, то очень высока вероятность помпажа компрессора (т.е. срыв потока воздуха и поломки компрессора).

От помпажа компрессора в обычных газотурбинных двигателях с одним газогенератором очень трудно отстроиться, а с несколькими газогенераторами, связанными между собой единым воздушным потоком, это будет сделать на порядок сложнее, если вообще возможно (см. Справочник авиационного техника. Изд. третье, перераб. и доп., П.С.Шевелько, Воениздат, 1974. Стр.250, Нерасчетные режимы работы компрессора). Поломка или простая разрегулировка одного из газогенераторов приведет к немедленной поломке всего двигателя.

Задачей предлагаемого изобретения является возможность создания высокоэкономичного, надежного с любой максимально возможной тягой двигателя.

Задача достигается тем, что двигатель содержит общую для газогенераторов гондолу, общую двухкаскадную свободную турбину, расположенную между газогенераторами, вращающуюся в противоположные стороны и передающую крутящие моменты с помощью двух одноступенчатых редукторов и двух валов, расположенных параллельно друг другу между редукторами, винтовентилятору, имеющему гондолу.

На Фиг.1, Фиг.2, Фиг.3, Фиг.4 схематично изображен турбовинтовентиляторный двигатель: фронтальный вид, сечение сверху, вид со входа и поперечное сечение соответственно.

Двигатель содержит два газогенератора 1, общую двухкаскадную турбину 2, вращающуюся в противоположные стороны, валы 3, одноступенчатые редукторы 4 и 5, винтовентилятор 6, сопло 8, гондолу винтовентилятора 7, гондолу газогенераторов 9.

При работе двигателя воздух поступает в газогенераторы 1, где превращается в газ с высоким давлением и высокой температурой, через общую двухкаскадную турбину 2, вращающуюся в разные стороны, газ поступает в сопло 8. Турбина 2 передает крутящие моменты одноступенчатому редуктору 5, от него через два разнесенных вала 3 одноступенчатому редуктору 4, а от него винтовентилятору 6, имеющему гондолу 10, который создает тягу, отбрасывая воздух назад.

Преимущества предложенной схемы турбовинтовентиляторного двигателя.

Использование в двигателе винтовентилятора с гондолой позволяет получить удельный расход топлива до 0,6 кг/кгс час при скорости М=0,8 (см. Новости зарубежной науки и техники №11, 1988, стр.15, Рис.1).

Применение двухкаскадой турбины, вращающейся в разные стороны, позволяет использовать простые одноступенчатые редукторы с цилиндрическими шестернями при любой передаваемой мощности.

Редукторы 4 и 5 состоят из двух независимых друг от друга редукторов.

В случае применения в переднем редукторе 4 паразитной шестерни можно просто добиться синхронизации вращения винтовентилятора 6.

В связи с тем, что валы 3 разнесены друг от друга и находятся выше и ниже горизонтальной оси двигателя, можно практически до соприкосновения сдвинуть газогенераторы, что позволит уменьшить площадь поперечного сечения двигателя и в связи с этим снизить сопротивление набегающему потоку воздуха. Также значительно упрощается конструкция опор валов 3. Падение давления масла, смазывающего редуктор, не приведет к поломке редукторов. Редукторы будут работать еще довольно долго без поломки, как обычная коробка передач у автомобильного двигателя. Зубья у шестерен редукторов могут быть любого профиля и конструкции (шевронные, косозубые и т.д.), что позволит уменьшить размеры (а значит и вес) шестерен и повысить их надежность (так как контакт зубьев шестерен можно сделать безударным) по сравнению с планетарным редуктором. Расход масла у редуктора в предложенной мной схеме на порядок ниже, чем у планетарного редуктора. А меньше масла - меньше вес. В связи с тем, что в предложенном редукторе отсутствуют сателлитные шестерни, упрощается регулировка через него положения лопастей у винтовентилятора. За счет возможности установки лопастей под оптимальным углом на разных режимах работы двигателя достигается высокий полетный к.п.д. самолета. Кроме того, простым поворотом лопастей можно получить реверс тяги.

Валы 3 находятся между газогенераторами и не ограничены в размере наружного диаметра, что позволяет изготавливать их жесткими и легкими. Если валы будут жесткими, то их можно будет очень точно отбалансировать, что позволит избежать вибраций. Газогенераторы не связаны между собой газовоздушным потоком, что позволяет отлаживать работу газогенераторов независимо друг от друга.

Остановка одного газогенератора не приведет к остановке всего двигателя. Двигатель потеряет только 30% тяги за счет форсирования другого газогенератора. Газогенераторы не имеют сложной системы отвода мощности для вращения генератора тока. Отвод мощности можно производить от редукторов. Агрегаты регулирования газогенераторов могут быть в одном экземпляре сразу на два газогенератора и располагаться в проеме между газогенераторами, защищенные гондолой газогенераторов. Гондола газогенераторов имеет створки, что позволяет легко и быстро добраться к агрегатам регулирования и газогенераторам для регламентного обслуживания двигателя. В связи с тем, что газогенераторы не имеют механической связи через валы друг с другом и с двигателем, их можно легко заменить прямо под крылом самолета, не снимая всего двигателя.

Конструкция предложенного мной двигателя состоит из легкозаменяемых модулей: газогенераторы, винтовентилятор с гондолой винтовентилятора, редукторы, свободная турбина, валы, сопла.

Изготовление перечисленных модулей двигателя освоено авиационной промышленностью. Технологических трудностей при изготовлении двигателя нет. Более того, изготовление станет проще.

Разделение двигателя на модули упрощает сборку двигателя, делает его ремонтопригодным.

Немаловажным фактором достоинства предлагаемого двигателя является дешевая доводка двигателя. Достаточно довести один газогенератор, на что уйдет в два раза меньше топлива. Возможно использование уже имеющихся газогенераторов от уже доведенных, хорошо зарекомендовавших себя двигателей. Скажем, для создания двигателя с тягой в 40 тонн уже есть прекрасные газогенераторы тягой 20 тонн. Для создания сверхмощных двигателей не потребуется специальное новое оборудование. Шум у предложенного двигателя будет значительно меньше, чем у аналогичного по мощности газотурбинного двигателя. Кроме того, невозможно, в принципе, изготовить турбовинтовентиляторный двигатель тягой в 40 тонн другой конструкции.

Если турбовинтовентиляторный двигатель будет трехвальным, то два вала должны принадлежать газогенератору. Двухвальные газогенераторы являются оптимальными и имеют самые лучшие характеристики. Третий вал служит для передачи крутящего момента от газогенератора через редуктор винтовентилятору. Редуктор должен быть дифференциальным планетарным. А планетарные редукторы пока не могут быть с тягой более 18 т.

Четырехвальные двигатели не удалось сделать еще никому.

Похожие патенты RU2371598C2

название год авторы номер документа
ЕДИНАЯ ТЕХНОЛОГИЯ ЭКСПЛУАТАЦИИ И ПРОИЗВОДСТВА ТРАНСПОРТНЫХ СРЕДСТВ "МАКСИНИО": БЕЗАЭРОДРОМНЫЙ САМОЛЕТ (ВАРИАНТЫ), ТУРБОВИНТОВЕНТИЛЯТОРНЫЙ ДВИГАТЕЛЬ, КРЫЛО (ВАРИАНТЫ), СПОСОБ СОЗДАНИЯ ПОДЪЕМНОЙ СИЛЫ И СПОСОБ РАБОТЫ ТУРБОВИНТОВЕНТИЛЯТОРНОГО ДВИГАТЕЛЯ 2010
  • Максимов Николай Иванович
RU2460672C2
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2007
  • Сафонов Валерий Иванович
RU2374467C2
ЕДИНАЯ ТЕХНОЛОГИЯ ЭКСПЛУАТАЦИИ И ПРОИЗВОДСТВА ТРАНСПОРТНЫХ СРЕДСТВ "МАКСИНИО", БЕЗАЭРОДРОМНЫЙ ЭЛЕКТРОСАМОЛЕТ (ВАРИАНТЫ), НЕСУЩЕЕ УСТРОЙСТВО, ТУРБОРОТОРНЫЙ ДВИГАТЕЛЬ (ВАРИАНТЫ), ПОЛИСТУПЕНЧАТЫЙ КОМПРЕССОР, ОБЕЧАЙКА ВИНТОВЕНТИЛЯТОРА, СПОСОБ РАБОТЫ ТУРБОРОТОРНОГО ДВИГАТЕЛЯ И СПОСОБ СОЗДАНИЯ ПОДЪЕМНОЙ СИЛЫ ЭЛЕКТРОСАМОЛЕТА 2010
  • Максимов Николай Иванович
RU2457153C2
ЕДИНАЯ ТЕХНОЛОГИЯ ЭКСПЛУАТАЦИИ И ПРОИЗВОДСТВА ТРАНСПОРТНЫХ СРЕДСТВ "МАКСИНИО": ЭЛЕКТРОСАМОЛЕТ ВЕРТИКАЛЬНОГО ВЗЛЕТА-ПОСАДКИ (ВАРИАНТЫ), ЧАСТИ ЭЛЕКТРОСАМОЛЕТА И СПОСОБЫ ИСПОЛЬЗОВАНИЯ ЭЛЕКТРОСАМОЛЕТА И ЧАСТЕЙ ЭЛЕКТРОСАМОЛЕТА 2010
  • Максимов Николай Иванович
RU2466908C2
ТУРБОВИНТОВЕНТИЛЯТОРНЫЙ ДВИГАТЕЛЬ 2010
  • Кузнецов Валерий Алексеевич
RU2430250C1
БОЕВОЙ УДАРНЫЙ ВЕРТОЛЕТ И СИЛОВАЯ УСТАНОВКА ВЕРТОЛЕТА 2019
  • Болотин Николай Борисович
RU2705545C1
ВИНТОВЕНТИЛЯТОРНЫЙ ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2019
  • Храмин Роман Владимирович
  • Фаррахов Фирдавис Агзамович
  • Кикоть Николай Владимирович
  • Буров Максим Николаевич
  • Поляков Илья Викторович
RU2730562C1
САМОЛЕТ ВЕРТИКАЛЬНОГО ВЗЛЕТА И ПОСАДКИ 2019
  • Болотин Николай Борисович
RU2708516C1
БОЕВОЙ САМОЛЕТ ВЕРТИКАЛЬНОГО ВЗЛЕТА И ПОСАДКИ 2018
  • Болотин Николай Борисович
RU2710843C1
ГИПЕРЗВУКОВОЙ САМОЛЕТ 2022
  • Михайлов Юрий Николаевич
RU2791941C1

Иллюстрации к изобретению RU 2 371 598 C2

Реферат патента 2009 года ТУРБОВИНТОВЕНТИЛЯТОРНЫЙ ДВИГАТЕЛЬ

Турбовинтовентиляторный двигатель содержит два газогенератора, состоящих из осевого компрессора, камеры сгорания и турбины, расположенных вдоль общего потока воздуха и сопла. Турбовинтовентиляторный двигатель также содержит общую для газогенераторов гондолу, общую двухкаскадную свободную турбину, расположенную между газогенераторами, вращающуюся в противоположные стороны и передающую крутящие моменты с помощью двух одноступенчатых редукторов и двух валов, расположенных параллельно друг другу между редукторами, винтовентилятору, имеющему гондолу. Изобретение направлено на повышение надежности и экономичности двигателя. 4 ил.

Формула изобретения RU 2 371 598 C2

Турбовинтовентиляторный двигатель, содержащий два газогенератора, состоящих из осевого компрессора, камеры сгорания и турбины, расположенных вдоль общего потока воздуха и сопла, отличающийся тем, что содержит общую для газогенераторов гондолу, общую двухкаскадную свободную турбину, расположенную между газогенераторами, вращающуюся в противоположные стороны и передающую крутящие моменты с помощью двух одноступенчатых редукторов и двух валов, расположенных параллельно друг другу между редукторами, винтовентилятору, имеющему гондолу.

Документы, цитированные в отчете о поиске Патент 2009 года RU2371598C2

Электромеханическая игрушка 1981
  • Горшенин Виктор Юрьевич
SU1020145A1
Футеровка для перегрузочных средств 1985
  • Стыллер Евель Ефимович
SU1447734A1
US 3861139 A, 21.01.1975
US 5274999 A, 04.01.1994
ОПОРА РОТОРА ГТД 1991
  • Кузнецов В.А.
RU2075658C1
Турбопрямоточный двигатель 1990
  • Глебов Геннадий Александрович
  • Демидов Герман Викторович
SU1800080A1

RU 2 371 598 C2

Авторы

Сафонов Валерий Иванович

Даты

2009-10-27Публикация

2008-01-09Подача